Research on Optimization of Live Streaming with Freight Forwarder Coupon Marketing Strategy Based on Gradient Boosting Model

ZHAO Qing-quan, YU Yun-hong, PAN Zuo-ming, ZHANG Rui-xi, LI Jia

Computer & Telecommunication ›› 2025, Vol. 1 ›› Issue (6) : 42-49.

Computer & Telecommunication ›› 2025, Vol. 1 ›› Issue (6) : 42-49.

Research on Optimization of Live Streaming with Freight Forwarder Coupon Marketing Strategy Based on Gradient Boosting Model

  • ZHAO Qing-quan, YU Yun-hong, PAN Zuo-ming, ZHANG Rui-xi, LI Jia
Author information +
History +

Abstract

With the rapid development of digital and intelligent e-commerce, the live streaming e-commerce industry is facing multiple challenges such as fragmented user demands, intensified market competition, and insufficient marketing efficiency. Based on user behavior data, this study constructs an extended RFM-QPC-V user characteristic model, and uses the K-Means clustering algorithm to generate user portraits, accurately depicting users' consumption preferences and value hierarchies. On this basis, a gradient boosting model is adopted to design a dynamic voucher delivery strategy, and the model performance is optimized through the SMOTE oversampling technique and the ENN under-sampling method. Experimental results show that the recall rate of this model reaches 0.7 and the AUC-ROC value reaches 0.88. It performs excellently in accurately identifying high value users and improving the conversion rate, providing effective technical support and decision - making reference for live streaming e-commerce. In addition, this study proposes a layered distribution and regional marketing strategy, designing differentiated coupon schemes for different customer groups, aiming to empower the efficient development of the smart digital e-commerce industry.

Key words

live streaming e-commerce / RFM-QPC-V user characteristic model / customer profiling / gradient boosting model / voucher marketing strategy

Cite this article

Download Citations
ZHAO Qing-quan, YU Yun-hong, PAN Zuo-ming, ZHANG Rui-xi, LI Jia. Research on Optimization of Live Streaming with Freight Forwarder Coupon Marketing Strategy Based on Gradient Boosting Model[J]. Computer & Telecommunication. 2025, 1(6): 42-49

References

[1] 熊金国,郭腾,周凯,等.智能时代地方政府网络舆情技术治理的困境及应对策略[J].网络安全与数据治理,2024,43(11):70-74.
[2] 吴亚琦. 基于Power BI的RFM客户价值分类模型研究[J].科学技术创新,2025(8):90-93.
[3] 尹上梓. 新零售背景下基于RFM模型的顾客价值提升策略研究[J].企业改革与管理,2025(2):89-92.
[4] 叶小芹. 基于数据仓库的RFM用户画像构建研究[J].黄山学院学报,2024,26(3):27-31.
[5] 张天鑫. 基于机器学习的网购用户复购预测[D].武汉:中南财经政法大学,2023.
[6] 黄炜,白珊珊,余辉,等.基于可解释机器学习的直播带货中用户购买行为预测研究[J/OL].海南大学学报(人文社会科学版),1-10[2025-04-24].https://doi.org/10.15886/j.cnki.hnus.202401.0140.
[7] Tawa D O.Predicting Bank Selection Choices Using Binary Regression with Independent Variables[D].杭州:浙江科技大学,2024.
[8] Shil R.Examining the Influence of Social Advertising on Buying Behavior:A Study of the Mediating Role of Brand Image and the Moderating Role of Gender[D].西安:长安大学,2024.
[9] 刘璐. B2B直播电商情境下主播多维特征影响销售绩效研究[D].成都:电子科技大学,2024.
[10] 张晨晨,杨振淇.大学生在直播平台购买意愿影响因素组态与路径研究——以塔里木大学为例[J].中国市场,2024(5):132-136.
[11] 郭家,刘烨,韩雪银,等.机器学习预测机械钻速及在工程上的应用[J].海洋石油,2024,44(1):92-95.
[12] Zhimin Z,Rui Y,Huansheng N.Internet of Brain,Thought,Thinking,and Creation[J].Chinese Journal of Electronics, 2022,31(6):1025-1042.
[13] 何树称,董晓璇.大数据时代下电子商务开展精准营销的策略研究[J].现代商业,2025(2):56-59.

Accesses

Citation

Detail

Sections
Recommended

/