This study focuses on the research of AIGC (Artificial Intelligence Generated Content)-empowered collaborative learning, analyzing the evolutionary process of collaborative learning paradigms from traditional collaborative learning, computer-supported collaborative learning to AIGC-driven generative collaborative learning. It elaborates on the core elements of the AIGC-driven generative collaborative learning paradigm, including the role reconstruction of teacher-student agents, the supporting system of environmental agents, and in-depth interactions under agent collaboration. The study proposes its implementation path, which forms a technical supporting system through four mechanisms: self-guidance, collaborative creation, path evolution, and swarm intelligence. Meanwhile, it points out the structural breakthroughs of AIGC-driven generative collaborative learning, such as developing learners' meta-collaboration abilities, constructing a collaborative knowledge co-creation network and cross-domain collaboration ecosystem, and promoting the intelligent evolution of collaborative roles and dynamic optimization of group decision-making. The research indicates that AIGC propels collaborative learning towards the stage of smart education, providing a practical blueprint for the transformation of educational paradigms and pointing out the direction for the application and innovative development of educational technology, which is conducive to cultivating innovative and collaborative talents.
Key words
Generative Artificial Intelligence /
collaborative learning /
educational paradigm /
agent /
smart education
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 丁遒劲,苏静.面向生成式人工智能(AIGC)的图书馆信息资源建设优化策略研究[J].图书情报工作,2024,68(18):23-31.
[2] 国家互联网信息办公室,中华人民共和国国家发展和改革委员会,中华人民共和国教育部,等.生成式人工智能服务管理暂行方法[EB/OL].(2023-07-10).https://www.gov.cn/zhengce/zhengceku/202307/content_6891752.htm.
[3] Karantzas G C,Avery M R,Macfarlane S,et al.Enhancing critical analysis and problem-solving skills in undergraduate psychology:an evaluation of a collaborative learning and problem-based learning approach[J].Australian Journal of Psychology,2013 (1):38-45.
[4] Al-Samarraie H,Saeed N.A systematic review of cloud computing tools for collaborative learning:Opportunities and challenges to the blended-learning environment[J].Computers & Education,2018(124):77-91.
[5] 何文涛,梁晨,庞兴会,等.协作学习活动设计的困境与出路[J].电化教育研究,2021(3):103-110.
[6] 彭绍东. 从面对面的协作学习、计算机支持的协作学习到混合式协作学习[J].电化教育研究,2010(8): 42-50.
[7] 张倩苇,桑新民,赵纳新.让学生学会在协作中学习——信息时代《学习论》课程的教学探索[J].中国电化教育,2000(10):11-14.
[8] 詹梦颖. 基于教学过程数据的面对面协作学习影响因素实证研究[D].金华:浙江师范大学,2020.
[9] 李海峰,王炜.CSCL研究30年:研究取向、核心问题与未来挑战——基于《计算机支持的协作学习国际手册》的要点分析[J].现代远程教育研究,2022,34(5):101-112.
[10] Sfard,A.(1998).On Two Metaphors for Learning and the Dangers of Choosing Just One[J].Educational Researcher,27(2):4-13.
[11] 吴军其,张萌萌,吴飞燕,等.AIGC支持下“双师课堂”协作学习范式构建及应用[J].现代远程教育研究,2024,36(6):93-101+111.
[12] 白雪梅,郭日发.生成式人工智能何以赋能学习、能力与评价?[J].现代教育技术,2024,34(1):55-63.
[13] Andrejczuk E,Bistaffa F,Blum C,et al.Synergistic team composition:A computational approach to foster diversity in teams[J].Knowledge-Based Systems,2019(15):1-16.
[14] 朱永海,张佳鑫,韩锡斌.基于生成式人工智能的个性化学习新形态[J].电化教育研究,2025(4):58-64.
[15] 何文涛,张梦丽,逯行,等.人工智能视域下人机协同教学模式构建[J].现代远距离教育,2023(2):78-87.
[16] 蔡苏,焦新月,杨阳,等.5G环境下的多模态智慧课堂实践[J].现代远程教育研究,2021,33(5):103-112.
[17] 章欣,翟雪松,李艳.“群体智能+教育”:促进知识与创新涌现的教育变革[J].上海教育, 2024(24):58-59.