A Dynamic Network Graph-based Analytical Framework for Patent Visualization

WANG Fei, LI Xue-long

Computer & Telecommunication ›› 2025, Vol. 1 ›› Issue (5) : 28-33.

Computer & Telecommunication ›› 2025, Vol. 1 ›› Issue (5) : 28-33.

A Dynamic Network Graph-based Analytical Framework for Patent Visualization

  • WANG Fei1,2, LI Xue-long1,2
Author information +
History +

Abstract

With the exponential growth of global patent application, conducting domain-specific patent analysis to uncover latent information in patent data, identify emerging productive forces, and explore technological innovation pathways has become a critical focus for national strategies, industrial sectors, and research institutions. However, current conventional patent analysis tools increasingly reveal significant limitations, including static analytical methods, insufficient interactivity, and difficulties in representing technological correlations. This study concentrates on patent relevance algorithms and D3.js visualization techniques to construct a patent analysis technical solution based on dynamic network graphs, achieving core functionalities such as deep correlation mining, dynamic real-time interaction, massive data processing, and multidimensional patent clustering analysis. Validation through a uranium mining patent visualization case demonstrates that the underlying algorithms exhibit high data accuracy, clear representation, and robust performance. The dynamic network graphs effectively visualize core patent identification, technology branch analysis. This technical solution demonstrates substantial practical value and research significance, potentially advancing patent analysis from "static statistics" to a new phase of "dynamic decision-making".

Key words

patent analysis / dynamic network graph / visualization / D3.js techniques

Cite this article

Download Citations
WANG Fei, LI Xue-long. A Dynamic Network Graph-based Analytical Framework for Patent Visualization[J]. Computer & Telecommunication. 2025, 1(5): 28-33

References

[1] 郭婕婷,肖国华.专利分析方法研究[J].情报杂志,2008(1):12-14+11.
[2] 王班班,赵程.中国的绿色技术创新——专利统计和影响因素[J].工业技术经济,2019,38(7):53-66.
[3] 方小利,肖学斌,刘霞.面向科技成果转化的高校与企业专利技术相似性量化方法研究[J].中国发明与专利,2025,22(2):4-13.
[4] 陈钢,项珍珍,蒿宏宾,等.基于专利数据分析的精细化道路照明系统调控技术发展现状研究[J].数字化转型,2025,2(2):112-125.
[5] 武晗. 面向专利数据的内容表示和关系建模方法及应用研究[D].合肥:中国科学技术大学,2023.
[6] 曾志成. 使用D3.js绑定多层数据的算法设计[J].现代计算机,2024,30(22):105-111.
[7] 王艺洋. 基于D3.js的关联关系可视化的设计与实现[D].武汉:武汉邮电科学研究院,2022.
[8] 宿培成. 基于D3.js的社会网络关系可视化研究[J].电子技术与软件工程,2021(3):205-206.
[9] 郑璇. 基于D3和React的数据分析可视化组件设计与实现[D].南京:东南大学,2019.
[10] 练培格,李英冰,刘波,等.基于多元时间序列动态图神经网络的交通速度预测[J].地球信息科学学报,2025,27(3):636-652.
[11] 闫钦与,卜凡亮,王一帆.基于脉冲神经网络优化的动态图链路预测[J].科学技术与工程,2025,25(4):1522-1528.
[12] 杜海星,王岩松,熊礼竹,等.基于动态图神经网络的社交媒体谣言识别研究[C]//中国自动化学会. 2024中国自动化大会论文集.西南大学计算机与信息科学学院软件学院,2024:497-502.
[13] 吴浩,孙毅超,柳淑学.基于B/S模式的实验室设备管理系统的设计与实现[J].实验技术与管理,2019,36(7):270-273.
[14] 黄敏,魏嘉琴,李茂西.基于预训练语言模型的IPC与高相似CLC类目自动映射[J].中文信息学报,2025,39(2):153-161.

Accesses

Citation

Detail

Sections
Recommended

/