To address the challenges of signal noise interference and model parameter optimization in bearing fault diagnosis, this paper proposes a comprehensive diagnostic method based on wavelet decomposition denoising, energy entropy feature extraction, and the adaptive Lévy flight improved sparrow search algorithm (ALF-SSA) optimized support vector machine (SVM). First, wavelet decomposition is used to perform multi-scale denoising on the collected bearing vibration signals, effectively suppressing noise while retaining the main features of the signal. The denoised signals are then segmented into time intervals, and the energy entropy of each segment is calculated to obtain feature vectors that reflect the local energy distribution of the signal. To overcome the limitations of the traditional sparrow search algorithm (SSA) in global search capability and local convergence, this paper introduces the adaptive Lévy flight strategy to improve the SSA, resulting in a more efficient optimization algorithm. Finally, the improved algorithm is used to optimize the key parameters of SVM, establishing a high-precision bearing fault diagnosis model. Experimental results show that the proposed method outperforms traditional methods in both diagnostic accuracy and robustness, providing effective technical support for bearing health monitoring.
Key words
wavelet decomposition /
feature extraction /
adaptive Lévy flight /
sparrow search algorithm /
support vector machine
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 尹晓伟,江雪峰,王龙福.风电机组轴承故障诊断与疲劳寿命研究综述[J].轴承,2022(5):1-8.
[2] 何清波,李天奇,彭志科.旋转机械故障诊断中的振动信号模型综述[J].振动.测试与诊断,2024,44(4):629-639+821.
[3] 陶唐飞,周文洁,况佳臣,等.融合多小波分解的深度卷积神经网络轴承故障诊断方法[J].西安交通大学学报,2024,58(5):31-41.
[4] 谢小正,王晋,赵荣珍,等.基于小波包能量熵和GWO-SVM的滚动轴承故障诊断[J].兰州理工大学学报,2022,48(5):59-64.
[5] 徐可,陈宗海,张陈斌,等.基于经验模态分解和支持向量机的滚动轴承故障诊断[J].控制理论与应用,2019,36(6):915-922.
[6] 马晨佩,李明辉,巩强令,等.基于麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J].科学技术与工程,2021,21(10):4025-4029.
[7] 石明江,罗仁泽,付元华.小波和能量特征提取的旋转机械故障诊断方法[J].电子测量与仪器学报,2015,29(8):1114-1120.
[8] 赵光权,姜泽东,胡聪,等.基于小波包能量熵和DBN的轴承故障诊断[J].电子测量与仪器学报,2019,33(2):32-38.
[9] 周建民,王发令,张臣臣,等.基于特征优选和GA-SVM的滚动轴承智能评估方法[J].振动与冲击,2021,40(4):227-234.