Autoencoder and Deep Network Tourism Recommendation Collaborative Filtering Optimization

FAN Xue-you, LIU Xiao-dan, XU Ren-wei, HE Yi-lin, LI Wei-wei

Computer & Telecommunication ›› 2025, Vol. 1 ›› Issue (4) : 51-54.

Computer & Telecommunication ›› 2025, Vol. 1 ›› Issue (4) : 51-54.

Autoencoder and Deep Network Tourism Recommendation Collaborative Filtering Optimization

  • FAN Xue-you, LIU Xiao-dan, XU Ren-wei, HE Yi-lin, LI Wei-wei
Author information +
History +

Abstract

With the rapid development of tourism and continuous advancements in information technology, tourism recommendation systems have become crucial tools for assisting users in travel planning. Traditional collaborative filtering recommendation algorithms, while capable of providing personalized suggestions based on user historical behavior, exhibit limitations in addressing data sparsity and modeling nonlinear relationships. This paper proposes a deep learning-based collaborative filtering optimization algorithm. By introducing autoencoders and Deep Neural Networks (DNN) to perform high-dimensional nonlinear mapping of user and attraction features, combined with traditional collaborative filtering techniques, the method achieves accurate prediction of user ratings for tourist attractions. Experimental results demonstrate superior performance over conventional algorithms across metrics including precision, recall, and F1-score, offering a novel technical pathway for personalized services in smart tourism applications.

Key words

deep learning / collaborative filtering / autoencoder networks / Deep Neural Network / travel recommendation

Cite this article

Download Citations
FAN Xue-you, LIU Xiao-dan, XU Ren-wei, HE Yi-lin, LI Wei-wei. Autoencoder and Deep Network Tourism Recommendation Collaborative Filtering Optimization[J]. Computer & Telecommunication. 2025, 1(4): 51-54

References

[1] 吴军. 基于协同过滤的个性化旅游推荐系统的研究与实现[D].北京:北京交通大学,2017.
[2] 贾丽坤,赵亚丽,黄晓英,等.考虑数据稀疏性的图书推荐协同过滤算法仿真[J].计算机仿真,2024,41(4):470-474.
[3] 陈彦韬. 基于深度学习的协同过滤推荐算法的改进和优化[J].电子制作,2019(12):40-42.
[4] 谢林基. 基于深度学习的兴趣点推荐算法及优化研究[D].广州:广东工业大学,2021.
[5] 程磊,高茂庭.基于深度神经网络的推荐算法[J].现代计算机(专业版),2018(22):3-7.
[6] 王昭. 基于自编码器和Transformer的生存时长预测问题特征构造算法研究[D].长春:吉林大学,2023.
[7] 段佳俊,陆中,王捷.基于多尺度CNN和Transformer的航空发动机寿命预测方法[J/OL].航空动力学报,1-12[2025-02-24]. DOI:10. 13224/j. cnki.jasp.20240311.

Accesses

Citation

Detail

Sections
Recommended

/