Traditional gesture recognition methods are often susceptible to interference from factors such as lighting conditions, obstructions, and inconvenient equipment carrying. This paper proposes a sensorless gesture recognition algorithm based on a multi-branch CNN-GRU framework (SGMCG). The method firstly processes Channel State Information (CSI) signals to construct a Body-coordinate Velocity Profile (BVP) dataset. Subsequently, multiple parallel CNN branches with varying kernel sizes extract spatial features of gestures. Each branch is followed by GRU networks to capture temporal dynamics. The temporal features from all branches are then fused and classified via a Softmax layer. Experimental results demonstrate that SGMCG achieves higher average recognition accuracy on both numerical and interactive gesture datasets compared to Widar3.0, GRU, and LSTM models, while also exhibiting superior robustness.
Key words
multi-branch /
CNN /
GRU /
gesture recognition
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 张海霞,廖绍雯.基于图像识别的移动增强现实技术在智慧旅游中的应用[J].自动化与仪器仪表,2024(8):121-125.
[2] 周勇. 基于红外传感的手势识别系统设计与应用[D].杭州:浙江理工大学,2023.
[3] 唐英哲. 基于多传感器数据融合的手势识别方法研究[D].南宁:广西大学,2024.
[4] 张子涵. 基于WiFi-CSI的跨场景人体动作识别方法研究[D].吉林:东北电力大学,2024.
[5] 常俊,黄彬,武浩.基于3D残差卷积注意力网络的跨域手势识别[J].传感器与微系统,2023,42(12):48-52.
[6] 马凯凯,段鹏松,孔金生.WiGNet:一种适用于无线感知场景的手势识别模型[J].西安交通大学学报,2023,57(5):194-203.
[7] 阴庚雷,丁文超,张俊宝.基于时间卷积网络的CSI动作识别[J].中原工学院学报,2020,31(5):59-65.
[8] 龚浩成,朱海,黄子非,等.基于表征知识蒸馏的WiFi手势识别方法[J/OL].计算机工程与科学,1-13[2024-09-28].http://kns.cnki.net/kcms/detail/43.1258.TP.20240701.1431.002.html.
[9] 鲁勇,吕绍和,王晓东,周兴铭.基于WiFi信号的人体行为感知技术研究综述[J].计算机学报,2019,42(2):1-21.
[10] 李翔宇. 基于Wi-Fi信号和多分类器的身份识别方法[J].江西电力职业技术学院学报,2023,36(11):13-15.
[11] Zhang Y,Zheng Y,Qian K,et al.Widar3.0:Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(11):8671-8688.