To address the limitations of traditional radar in detecting low-altitude small unmanned aerial vehicles (UAVs), a deep learning-based detection system for low-altitude small UAVs is proposed. The system is designed with a three-tier architecture: the perception layer uses cameras to capture real-time image data; the hardware layer, based on edge computing technology, employs the Jetson Nano as the hardware platform; and the decision layer integrates object detection algorithms to enable efficient and accurate early warning functionality. Through experimental comparison and analysis of mainstream object detection algorithms, the optimal algorithm, YOLOv8, is selected and optimized. Experimental results show significant improvements in various performance metrics of the optimized algorithm, validating the effectiveness of the proposed solution.
Key words
UAV /
deep learning /
edge computing /
Jetson Nano /
YOLOv8
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 汤新民,顾俊伟,刘冰,等.低空监视技术及其发展趋势综述[J].南京航空航天大学学报,2024, 56(6):973-993.
[2] 邱小剑,骆博雅,付珍,等.国内外反无人机技术发展综述[J].战术导弹技术,2024(5):63-73+98.
[3] 张霞峰,柳畅,单业奇,等.基于视觉传感器的无人驾驶机器人控制系统设计与研究[J].机电工程技术,2024,53(12):146-148+186.
[4] Jeong E,Kim J,Ha S,et al.TensorRT-Based Framework and Optimization Methodology for Deep Learning Inference on Jetson Boards[J].ACM Transactions on Embedded Computing Systems,2022,21(5):51-76.
[5] 张光钱,周广利,黄飞,等.面向3D目标检测的多模态生成式图像数据增强的研究[J].重庆理工大学学报(自然科学),2024,38(10):13-20.
[6] 曲坤,王震龙,刘志锋.基于多表征学习的交叉熵集成图像分类方法[J].计算机工程,2024,50(10):322-333.
[7] 孙仕棚,兰时勇.考虑注意力的无锚框孪生网络目标跟踪算法[J].计算机应用与软件,2024, 41(12):268-274.
[8] 黄海新,徐成龙.大语言模型的剪枝算法综述[J].通信与信息技术,2025(1):95-99.
[9] Jani,M.,Alhassan,et al.Model Compression Methods for YOLOv5:A Review[J].arXiv preprint.2023, arXiv:2307. 11904.
[10] Betti A.YOLO-S:A Lightweight and Accurate YOLO-like Network for Small Target Detection in Aerial Imagery[J].Sensors,23(4):1865.