Aiming at the two problems of poor real-time performance and calculation accuracy caused by insufficient processor computing power and limited effective bits when implementing traditional integrated navigation simulation algorithms on hardware platforms built with MEMS inertial devices and industrial-grade processors, this study quantifies the noise and error magnitudes of MEMS inertial devices, simplifies Kalman filter error equations, and adopts UD decomposition algorithm. The optimized algorithm achieves 17% improvement in computational speed, effectively demonstrating its validity. Ultimately it is implemented on a low-cost attitude measurement system composed of MEMS devices. Vehicle tests verify that the heading angle accuracy reaches 0.5° and horizontal attitude angle accuracy reaches 0.2°, successfully resolving the issues of real-time navigation data output and computational precision.
Key words
low-cost /
attitude measurement /
Kalman filter
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王江荣. 基于卡尔曼滤波算法的最小二乘拟合及应用[J].自动化与仪器仪表,2013(3):140-142.
[2] 马高印,郭中洋,刘飞,等.基于MCM&SOC方案的微惯性器件系统集成技术综述[J].导航定位与授时,2019,6(1):108-115.
[3] 张楠,崔厚坤,徐伟周.IMU姿态解算的卡尔曼滤波方法比较[J].河南科技,2023,42(11):24-29.
[4] Huiliang C,Yupeng L,Li L,et al.Humidity Drift Modeling and Compensation of MEMS Gyroscope Based on IAWTD-CSVM-EEMD Algorithms[J].IEEE ACCESS,2021,995686-95701.
[5] 王彤,匡乃亮,钟升,等.基于四元数矢量平均的阵列MEMS-IMU轴对准及姿态解算方法[J].中国惯性技术学报,2023,31(7):642-649.
[6] 李文良,颜斌,冯彬.基于单片机的互补滤波与四元数滤波的研究[J].电子制作,2024,32(11):37-39+18.
[7] 冯鹏,邹世开.卡尔曼滤波器UD分解滤波算法的改进[J].遥测遥控,2005(1):10-14.
[8] 郜福全,陈丽容,丁传红,等.UD分解自适应滤波在SINS初始对准中的应用[J].计算机工程与设计,2014,35(1):158-162+212.
[9] 苑艳华,李四海,南江.基于卡尔曼滤波器的航姿系统测姿算法研究[J].传感技术学报,2011,24(12):1718-1722.