Please wait a minute...
Computer & Telecommunication  2024, Vol. 1 Issue (10): 21-    DOI: 10.15966/j.cnki.dnydx.2024.10.003
Current Issue | Archive | Adv Search |
Rice Disease Detection Algorithm Based on Improved YOLOv10
Information Engineering College, Hebei University of Architecture
Download:
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the problems of difficult disease spot recognition and slow detection speed caused by complex backgrounds in rice images, this paper proposes an improved YOLOv10 target detection algorithm for automatic identification of rice diseases. Firstly, the backbone network of YOLOv10 is improved by introducing Large Separable Kernel Attention (LSKA) to replace the original Polarized Self-Attention (PSA), which improves the sensitivity to features, enhances the generalization ability and efficiency of the network. In addition, the loss function is replaced by the Normalized Wasserstein Distance (NWD) loss function, which re‐ duces the feature map while preserving more information as much as possible, improving the processing efficiency. Experiments con‐ ducted on the rice dataset show that the improved YOLOv10 algorithm achieves 97.95% on the mAP50 indicator, representing a 1.08% increase compared to the original YOLOv10; and it achieves 78.74% on the mAP50-95 indicator, representing a 1.52% in‐ crease compared to the original YOLOv10.
Key wordsrice disease detection      YOLOv10      attention mechanism      loss function     
Published: 27 April 2025

Cite this article:

ZHAO Ming-zhan SU Zi-yun DU Xiao-yi. Rice Disease Detection Algorithm Based on Improved YOLOv10. Computer & Telecommunication, 2024, 1(10): 21-.

URL:

https://www.computertelecom.com.cn/EN/10.15966/j.cnki.dnydx.2024.10.003     OR     https://www.computertelecom.com.cn/EN/Y2024/V1/I10/21

[1] XIN Bo-fu. Aerial Vehicle Detection in Low Light Environment Based on Yolov5[J]. 电脑与电信, 2024, 1(1): 78-83.
[2] LI Qing-xu ZHANG Chen CHENG Xue. [J]. 电脑与电信, 2022, 1(1-2): 1-6.
Copyright © Computer & Telecommunication, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd