Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2024, Vol. 1 Issue (4): 1-5    DOI: 10.15966/j.cnki.dnydx.2024.04.016
  基金项目 本期目录 | 过刊浏览 | 高级检索 |
基于图嵌入模型的犯罪组织成员关系预测
1. 广西警察学院信息技术学院
2. 广西警察学院公安大数据现代产业学院
3. 广西警察学院刑事科学技术学院
Crime Organization Member Relationship Prediction Based on Graph Embedding Model
1.School of Information Technology, Guangxi Police College
2. School of Public Security Big Data Modern Industry, Guangxi Police College
3. School of Criminal Science and Technology, Guangxi Police College
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
随着社会的快速发展,犯罪行为愈发复杂多样化,群体性案件高发多发,使得基于犯罪学理论和案例研判的传统
犯罪组织分析方法已无法满足情报工作的需求。因此,利用深度学习技术分析和挖掘犯罪组织特性,已成为数据警务工作的
必然选择。本文使用图嵌入模型变分图自编码器(VGAE)对犯罪组织成员关系进行预测。模型的编码器部分提取犯罪组织
结构特征并生成特征向量,解码器部分使用向量内积重构犯罪组织结构,进而预测犯罪组织中两个成员之间是否存在关联。
为了评估VGAE在关系预测任务中的实验表现,在开源犯罪网络数据集Montagna上进行测试。实验结果表明,VGAE具备较
高的预测性能,能够有效识别犯罪组织成员之间的潜在关系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词
自编码器
    
Abstract
With the rapid development of society, criminal activities have become increasingly complex and diversified, and mass
cases become more frequent, which makes the traditional criminal organization analysis method based on criminology theory and
case analysis no longer meet the needs of intelligence work. Therefore, utilizing deep learning technology to analyze and explore the
characteristics of criminal organizations has become an essential approach for data policing efforts. This article utilizes the Varia‐
tional Graph Autoencoder (VGAE) model to predict relationships among members of criminal organizations. The encoder part of the
model extracts structural features of criminal organizations and generates feature vectors, while the decoder part reconstructs the
criminal organization structure using vector inner products. This process helps predict whether there is a connection between two
members of the criminal organization. To evaluate the experimental performance of VGAE in relationship prediction tasks, tests are
conducted on the open-source crime network dataset Montagna. The experimental results show that VGAE demonstrates high predic‐
tive performance and can effectively identify potential relationships among members of criminal organizations.
Key words
年卷期日期: 2024-04-10      出版日期: 2024-10-28
引用本文:   
袁立宁,  邢中玉,  杨国艺  罗恒雨.
基于图嵌入模型的犯罪组织成员关系预测
[J]. 电脑与电信, 2024, 1(4): 1-5.
YUAN Li-ning, XING Zhong-yu, YANG Guo-yi LUO Heng-yu.
Crime Organization Member Relationship Prediction Based on Graph Embedding Model
. Computer & Telecommunication, 2024, 1(4): 1-5.
链接本文:  
https://www.computertelecom.com.cn/CN/10.15966/j.cnki.dnydx.2024.04.016  或          https://www.computertelecom.com.cn/CN/Y2024/V1/I4/1
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4