Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2023, Vol. 1 Issue (11): 7-13    DOI: 10.15966/j.cnki.dnydx.2023.11.007
  基金项目 本期目录 | 过刊浏览 | 高级检索 |
融合天鹰勘探思想的鲸鱼优化算法改进
哈尔滨师范大学 计算机科学与信息工程学院
Whale Optimization Algorithm with Aquila Exploration Method
Harbin Normal University
全文: PDF( KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
鲸鱼优化器(WOA)是一种有效的元启发式算法。但鲸鱼优化算法往往收敛速度慢并且容易陷入局部最优解。 因此,提出了基于天鹰优化算法(AO)的勘探思想改进的算法来解决全局优化问题。改进后的算法受到了天鹰优化算法勘探 思想的启发,首先,天鹰先进行勘探,扩大了搜索范围,以提高全局搜索能力并降低陷入局部最优的可能性;其次,鲸鱼游动围 猎,以此平衡算法勘探和开发两个阶段。为了验证算法的有效性,本文算法以基准测试函数为实验对象,与其他流行的元启发 式算法进行比较。实验结果证明本文所提出的算法具有良好的收敛速度、寻优精度和稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 鲸鱼优化算法天鹰优化算法全局优化    
Abstract
The Whale Optimization Algorithm (WOA) is an effective meta-heuristic. However, whale optimization algorithms tend to converge slowly and are prone to fall into local optimal solutions. Therefore, this paper proposes an algorithm based on the exploration idea of the Aquila Optimizer (AO) to solve global optimization problems. The improved algorithm is inspired by the exploration idea of the Aquila Optimizer. Firstly, Aquilas conduct exploration to expand the search range, thereby enhancing the global search capability and reducing the likelihood of getting trapped in local optima. Secondly, it incorporates the hunting behavior of whales to balance the exploration and exploitation phases of the algorithm. To validate the effectiveness of the algorithm, this study uses benchmark test functions as experimental objects and compares it with other popular metaheuristic algorithms. The experimental results demonstrate that the proposed algorithm in this study has shown good convergence speed, optimization accuracy, and stability.
Key wordsWhale Optimization Algorithm(WOA)    Aquila optimizer(AO)    global optimization 
年卷期日期: 2023-11-10      出版日期: 2024-05-16
引用本文:   
齐 欣 于 延 马 宁 吴昊谦. 融合天鹰勘探思想的鲸鱼优化算法改进[J]. 电脑与电信, 2023, 1(11): 7-13.
QI Xin YU Yan MA Ning WU Hao-qian. Whale Optimization Algorithm with Aquila Exploration Method. Computer & Telecommunication, 2023, 1(11): 7-13.
链接本文:  
https://www.computertelecom.com.cn/CN/10.15966/j.cnki.dnydx.2023.11.007  或          https://www.computertelecom.com.cn/CN/Y2023/V1/I11/7
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4