基于YOLOv8和人脸关键点检测的驾驶员 疲劳驾驶识别算法设计

何宗熹 蒋明忠 谢铭霞 庞家宝 陈秋艳 胡益博

电脑与电信 ›› 2023, Vol. 1 ›› Issue (11) : 1-6.

电脑与电信 ›› 2023, Vol. 1 ›› Issue (11) : 1-6.
基金项目

基于YOLOv8和人脸关键点检测的驾驶员 疲劳驾驶识别算法设计

作者信息 +

Design of Driver Fatigue Recognition Algorithm Based on YOLOv8 and Face Key Points Detection

Author information +
文章历史 +

摘要

据统计,交通事故中因为疲劳驾驶、精神力不集中所导致的事故率占了93%。针对这个问题,引入人脸68个关键 点,基于深度学习及机器视觉算法概念,结合YOLOv8模型以及相关疲劳驾驶判定机制,通过PERCLOS算法、MAR算法和 EAR算法以及HPE算法提高系统的准确性和可靠性,成功构建了一套可以对疲劳驾驶行为进行识别的算法。

Abstract

According to statistics, the accident rate caused by fatigue driving and mental inconcentration in traffic accidents accounts for 93%. To solve this problem, 68 key points of face are introduced in this paper. Based on deep learning and machine vision algorithm concepts, combined with YOLOv8 model and related fatigue driving judgment mechanism, PERCLOS algorithm, MAR algorithm, EAR algorithm and HPE algorithm are used to improve the accuracy and reliability of the system. A set of algorithms for recognizing tired driving behavior is successfully constructed.

关键词

目标检测 / 人脸关键点 / 深度学习 / 疲劳驾驶 / YOLOv8

Key words

target detection / face key points / deep learning / fatigue driving / YOLOv8

引用本文

导出引用
何宗熹 蒋明忠 谢铭霞 庞家宝 陈秋艳 胡益博. 基于YOLOv8和人脸关键点检测的驾驶员 疲劳驾驶识别算法设计[J]. 电脑与电信. 2023, 1(11): 1-6
HE Zong-xi JIANG Ming-zhong XIE Ming-xia PANG Jia-bao CHEN Qiu-yan HU Yi-bo. Design of Driver Fatigue Recognition Algorithm Based on YOLOv8 and Face Key Points Detection[J]. Computer & Telecommunication. 2023, 1(11): 1-6

Accesses

Citation

Detail

段落导航
相关文章

/