Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2023, Vol. 1 Issue (11): 29-    
  基金项目 本期目录 | 过刊浏览 | 高级检索 |
桥涵积水深度预测的PSO-SVR模型
1.防灾科技学院 2. 山东微立方信息技术有限公司
Prediction of Waterlogging Depth in Bridges and Culverts Based on PSO-SVR
1. Institute of Disaster Prevention 2. Shandong Mac-cube Information Technology Co., Ltd
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
城市内涝是一种重要的城市灾害,而桥涵积水是城市内涝的主要表现形式之一,容易造成严重的生命伤亡和财 产损失。为了提高桥涵积水深度预测的效率和精度,以当前的气象数据作为输入向量,输出向量是积水深度数据,提出一种桥 涵积水深度预测模型PSO-SVR。首先利用SVR建立积水深度预测模型,再采用PSO对关键参数进行寻优,具有客观性和简 易性的优点。实验结果表明,PSO-SVR模型在桥涵积水深度预测中是有效的,与传统SVR和BP神经网络预测模型相比, PSO-SVR模型对积水深度具有更高的拟合精度。该模型可以为城市内涝预警和应急救援决策提供技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 城市内涝支持向量回归粒子群算法积水预测    
Abstract
Urban waterlogging is an important urban disaster, and culvert ponding is one of the main manifestations of urban waterlogging, which can easily cause serious casualties and property losses. In order to improve the efficiency and accuracy of predicting the culvert ponding depth, a predicting model naming PSO-SVR is proposed, which the current meteorological data and waterlogging depth data are selected as input and output vectors respectively. Firstly, a support vector regression prediction model (SVR) for the culvert ponding depth is established, and then the particle swarm optimization algorithm (PSO) is used to optimize key parameters, which has the advantages of objectivity and simplicity. The experimental results indicate that the PSO-SVR model is effective in predicting the depth of culvert ponding. Compared with traditional prediction models of SVR and BP neural network, the PSOSVR model has higher fitting accuracy for waterlogging depth. This model can provide technical support for urban waterlogging warning and emergency rescue decision-making.
Key wordsurban waterlogging    support vector regression    particle swarm optimization algorithm    water accumulation prediction
年卷期日期: 2023-11-10      出版日期: 2024-05-17
引用本文:   
薛子云 李 忠 王 志 张莉丽 宋庆昌. 桥涵积水深度预测的PSO-SVR模型[J]. 电脑与电信, 2023, 1(11): 29-.
XUE Zi-yun LI Zhong WANG Zhi ZHANG Li-li SONG Qing-chang. Prediction of Waterlogging Depth in Bridges and Culverts Based on PSO-SVR. Computer & Telecommunication, 2023, 1(11): 29-.
链接本文:  
https://www.computertelecom.com.cn/CN/  或          https://www.computertelecom.com.cn/CN/Y2023/V1/I11/29
[1] 刘星晨 袁一平. 基于改进的BP神经网络负荷预测[J]. 电脑与电信, 2024, 1(3): 68-.
[2] 郑 睿 李 成 陈灿伟 杨 棚.
一种针对城市极端强降雨风险早期识别的方法
[J]. 电脑与电信, 2021, 0(10): 70-87.
[3] 王晶 郭剑. 基于粒子群优化的灰色预测方法[J]. , 2011, 1(12): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4