基于摄像头的车载盲区行人智能检测系统

江达伟, 陈清辉, 代壮壮

电脑与电信 ›› 2025, Vol. 1 ›› Issue (7) : 10-12.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (7) : 10-12.
智能识别

基于摄像头的车载盲区行人智能检测系统

  • 江达伟, 陈清辉, 代壮壮
作者信息 +

Pedestrian Detection System for Vehicle Blind Zones Based on Intelligent Camera

  • JIANG Da-wei, CHEN Qing-hui, DAI Zhuang-zhuang
Author information +
文章历史 +

摘要

汽车驾驶的安全问题一直都是人们关注的问题,车辆搭载行人盲区检测系统可以有效地降低行人碰撞风险。现有的车载盲区行人检测方案往往功耗大且成本高,云端处理方案又难以满足延迟敏感的车端检测的需求。针对上述问题,采用一款功耗和成本较低的边缘计算平台K230,结合YOLOv8算法,通过WiderPerson行人数据集完成训练,最终通过量化部署实现了一个基于摄像头的车载盲区行人智能检测系统。实验结果表明,在道路行人较多、存在遮挡的情况下,系统也能准确识别到行人目标并发出安全预警。

Abstract

The safety of vehicle driving has always been a concern of people. Vehicle-mounted pedestrian blind spot detection systems can effectively reduce the risk of pedestrian collisions. The existing in-vehicle blind spot pedestrian detection solutions often suffer from high power consumption and costs, while cloud-based processing solutions struggle to meet the latency-sensitive requirements of vehicle-side detection. To address these issues, this paper employs a low-power and low-cost edge computing platform K230, combined with the YOLOv8 algorithm, and completes training using the WiderPerson pedestrian dataset. Finally, a camera-based intelligent vehicle blind spot pedestrian detection system is implemented through quantization deployment. Experimental results demonstrate that the system can accurately identify pedestrian targets and issue safety warnings even in scenarios with dense road pedestrians and occlusions.

关键词

边缘计算 / 行人目标检测 / YOLO / K230

Key words

edge computing / pedestrian target detection / YOLO / K230

引用本文

导出引用
江达伟, 陈清辉, 代壮壮. 基于摄像头的车载盲区行人智能检测系统[J]. 电脑与电信. 2025, 1(7): 10-12
JIANG Da-wei, CHEN Qing-hui, DAI Zhuang-zhuang. Pedestrian Detection System for Vehicle Blind Zones Based on Intelligent Camera[J]. Computer & Telecommunication. 2025, 1(7): 10-12
中图分类号: TP391.4    U492.4   

参考文献

[1] 刘斐齐. 中国汽车保有量预测研究[J].车用能源储运销技术,2024(5):6-13.
[2] 刘雷,陈晨,冯杰,等.车载边缘计算卸载技术研究综述[J].电子学报,2021(5):861-871.
[3] 赵浩源,刘金来,禹梓浩,等.先进的自动驾驶数据采集与存储技术研究综述[J].汽车技术,2024(2):1-16.
[4] Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2014:580-587.
[5] R Girshick.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV).2015:1440-1448.
[6] Redmon J,Divvala S,Girshick R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[7] 郭俊青,何小海,滕奇志.基于YOLOv8-seg 的岩心CT 图像颗粒目标提取算法[J].四川大学学报(自然科学版),2025(1): 116-125.
[8] 贺纪桦,张月峰,刘悦云.基于改进YOLOv8的智慧工厂工人不规范行为检测[J].制造技术与机床,2025(2):185-193.

基金

2024年江西理工大学校级大学生创新创业训练计划项目“基于摄像头的车载盲区行人智能检测系统”,项目编号:DC202410407184

Accesses

Citation

Detail

段落导航
相关文章

/