摘要
随着电动汽车的快速普及,其大规模充电行为对电网运行带来了显著影响。基于多用户场景,研究了电动汽车充电负荷的时空分布特性及其对电网的影响,并提出了一种优化互动机制。首先,基于用户行为模拟,分析了住宅区、商业区和公共场所用户的充电负荷特性;其次,构建了分布式负荷优化模型,并采用动态电价和分时调节策略优化电网负荷分布。仿真结果表明,互动机制能够有效降低峰值负荷,提高谷值负荷,显著改善电网运行的安全性和经济性。本研究为电动汽车与电网的高效互动提供了理论支持。
Abstract
With the rapid adoption of electric vehicles (EVs), their large-scale charging behaviors significantly impact grid operations. This study investigates the spatial and temporal characteristics of EV charging loads and their effects on the power grid under multi-user scenarios and proposes an optimized interaction mechanism. First, user charging load characteristics are analyzed for residential, commercial, and public areas based on behavior simulations. Subsequently, a distributed load optimization model is constructed, employing dynamic pricing and time-shifting strategies to optimize grid load distribution. Simulation results demonstrate that the interaction mechanism effectively reduces peak loads, increases valley loads, and significantly improves the grid’s safety and economic performance. This study provides theoretical support for efficient interactions between EVs and the power grid.
关键词
电动汽车 /
充电负荷 /
电网优化 /
互动机制 /
动态电价
Key words
electric vehicles /
charging load /
grid optimization /
interaction mechanism /
dynamic pricing
杨光.
电动汽车充电对电网的影响及互动机制优化研究[J]. 电脑与电信. 2025, 1(3): 36-40
YANG Guang.
Study on the Influence of Electric Vehicle Charging on Power Grid and Optimization of Interaction Mechanism[J]. Computer & Telecommunication. 2025, 1(3): 36-40
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Muratori M.Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand[J]. Nature Energy, 2018, 3(3):193-201.
[2] 饶楚楚. 考虑源-网-荷协调的分布式电源与电动汽车充电站优化配置研究[D]. 南昌:南昌大学, 2024.
[3] Hamidreza Kamankesh, et al.Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand[J]. Energy, 2016(100):285-297.
[4] Hafez Omar, et al.Integrating EV Charging Stations as Smart Loads for Demand Response Provisions in Distribution System[J]. IEEE Transactions on Smart Grid, 2018, 9(2):1096-1106.
[5] 谢冬冬, 刘鑫, 潘雪晴. 大规模电动汽车接入对配电网的影响探讨[J]. 技术与市场, 2018, 25(10):98-99.
[6] 李学成. 基于价格激励的电动汽车充电导航策略研究[D]. 成都:四川大学, 2021.
[7] 詹晓辉. 电动汽车对区域配电网的影响评估及其控制策略研究[D]. 北京:华北电力大学, 2019.
基金
2025年度河南省高等学校重点科研项目“基于深度学习的工业机器人抓取系统研究”,项目编号:25A413011