基于Faster-RCNN的遥感影像滑坡识别

王跃宝, 郭晓彤, 鲁王泽

电脑与电信 ›› 2025, Vol. 1 ›› Issue (3) : 32-35.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (3) : 32-35.
智能识别

基于Faster-RCNN的遥感影像滑坡识别

  • 王跃宝, 郭晓彤, 鲁王泽
作者信息 +

Landslide Recognition from Remote Sensing Images Based on Faster-RCNN

  • WANG Yue-bao, GUO Xiao-tong, LU Wang-ze
Author information +
文章历史 +

摘要

滑坡是我国频发的一种自然灾害,往往具有极大的损毁性与危害性,给人们的生命财产安全和生态环境造成严重威胁。滑坡识别对灾后救援及灾后评估有重要意义。针对传统的滑坡识别方法存在识别效率低、主观性强等问题,提出了一种改进的Faster-RCNN滑坡识别方法。该方法在Faster-RCNN模型的基础上,用特征提取能力更为出色的ResNet-50替换了原有的主干网络VGG-16,并引入了感兴趣区域对齐(ROI Align)策略,以提高模型的候选框定位精度,从而进一步提升模型的整体检测效果。实验结果表明,改进后的Faster-RCNN模型在准确率和召回率方面均有所提高,能够快速且准确地检测复杂背景下的滑坡,具有较高的应用价值。

Abstract

Landslide is a kind of natural disaster that occurs frequently in our country, which is often extremely destructive and hazardous, and poses a serious threat to people's life and property safety and the ecological environment. Landslide identification is important for post-disaster rescue and post-disaster assessment. The traditional landslide identification method has the problems of low identification efficiency and strong subjectivity. In this paper, an improved Faster-RCNN landslide identification method is proposed. Based on the Faster-RCNN model, the method replaces the original backbone network VGG-16 with ResNet-50, which has more excellent feature extraction capability, and introduces the region of interest alignment (ROI Align) strategy to improve the model's candidate frame localization accuracy, so as to further enhance the overall detection effect of the model. The experimental results show that the improved Faster-RCNN model improves both accuracy and recall, and is able to quickly and accurately detect landslides in complex backgrounds, which has high application value.

关键词

滑坡识别 / 深度学习 / Faster-RCNN / 目标检测

Key words

landslide identification / deep learning / Faster-RCNN / target detection

引用本文

导出引用
王跃宝, 郭晓彤, 鲁王泽. 基于Faster-RCNN的遥感影像滑坡识别[J]. 电脑与电信. 2025, 1(3): 32-35
WANG Yue-bao, GUO Xiao-tong, LU Wang-ze. Landslide Recognition from Remote Sensing Images Based on Faster-RCNN[J]. Computer & Telecommunication. 2025, 1(3): 32-35
中图分类号: TP183   

参考文献

[1] 赵通,张双成,何晓宁,等.改进的DeepLabV3+模型用于震后高分遥感影像滑坡识别[J].遥感学报,2024,28(9):2293-2305.
[2] 于宪煜,杨森.基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究[J/OL].大地测量与地球动力学,1-8[2024-12-10].https://doi.org/10.14075/j.jgg. 2024.03.090.
[3] 2023年中国生态环境状况公报(摘录)[J].环境保护,2024,52(11):53-65.
[4] 彭令,徐素宁,梅军军,等.地震滑坡高分辨率遥感影像识别[J].遥感学报,2017,21(4):509-518.
[5] 周洪福,方甜,韦玉婷.国内外地震滑坡研究:现状、问题与展望[J].沉积与特提斯地质,2023,43(3):615-628.
[6] 张铎,吴中海,李家存,等.国内外地震滑坡研究综述[J].地质力学学报,2013,19(3):225-241.
[7] Ji,Shunping,et al.Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J].Landslides,2020 (17):1337-1352.
[8] 巨袁臻,许强,金时超,等.使用深度学习方法实现黄土滑坡自动识别[J].武汉大学学报(信息科学版),2020,45(11):1747-1755.

Accesses

Citation

Detail

段落导航
相关文章

/