基于改进SSD的航拍作物病虫害识别技术研究

郝艳艳

电脑与电信 ›› 2025, Vol. 1 ›› Issue (3) : 28-31.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (3) : 28-31.
智能识别

基于改进SSD的航拍作物病虫害识别技术研究

  • 郝艳艳
作者信息 +

Research on Aerial Crop Disease and Pest Identification Technology Based on Improved SSD

  • HAO Yan-yan
Author information +
文章历史 +

摘要

分析基于航拍图像的病虫害识别场景,发现该场景对网络中浅层特征图中小目标的信息提取要求较高。为解决这个问题,对SSD网络进行了改进,优化了目标检测层,提出一种双主干网络的策略DB-SSD(Dual Backbone SSD),即在保持原本的VGG16网络不变的基础上,额外增加一条更能表示浅层细节信息的ResNet50作为次主干网络,来丰富特征图的表达。实验表明,在识别基于航拍图像的病虫害方面,所提检测算法具有明显的优势。

Abstract

Analyzing the scene of pest and disease recognition based on aerial images, it is found that this scene requires high information extraction of small targets in shallow feature maps in the network. To address this issue, improvements are made to the SSD network by optimizing the object detection layer and proposing a dual backbone network strategy called DB-SSD (Dual Backbone SSD). This strategy involves adding an additional ResNet50 as a secondary backbone network that can better represent shallow details while maintaining the original VGG16 network, in order to enrich the expression of feature maps. Experiments have shown that the proposed detection algorithm has significant advantages in identifying pests and diseases based on aerial images.

关键词

航拍图像 / 病虫害识别 / 目标检测

Key words

aerial images / disease and pest identification / target detection

引用本文

导出引用
郝艳艳. 基于改进SSD的航拍作物病虫害识别技术研究[J]. 电脑与电信. 2025, 1(3): 28-31
HAO Yan-yan. Research on Aerial Crop Disease and Pest Identification Technology Based on Improved SSD[J]. Computer & Telecommunication. 2025, 1(3): 28-31
中图分类号: TP391.41    TP183   

参考文献

[1] Ha J,Moon H,Kwak J,Hassan S,Dang M,Lee O,Park H.Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles[J].Journal of Applied Remote Sensing,2024,11(4):042621.
[2] Sugiura R,Tsuda S,Tamiya S,Itoh A,Nishiwaki K,et al.Field phenoty ping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle[J].Biosyst.Eng.,2024,148:1-10.
[3] 王玉庆. 基于无人机的茶叶病虫害防治系统研究[D]. 徐州:中国矿业大学,2019.
[4] 孙钰,周焱,袁明帅,刘文萍,骆有庆,宗世祥.基于深度学习的森林虫害无人机实时监测方法[J].农业工程学报,2018,34(21):74-81.
[5] 李冰,李纪云,贾猛.基于深度学习特征融合技术的小麦病虫害图像识别准确性研究[J].信息技术与信息化,2024(8):83-87.
[6] 郝艳艳. 自然背景下轻量化农作物病害自动识别算法研究[J].电脑与电信,2023(6):62-65.

基金

2025年度河南省科技攻关项目“基于航拍图像的高标准农田病虫害识别技术研究与应用”,项目编号:252102110228; 2021年河南工业贸易职业学院校级科研团队项目“大数据创新与应用科研团队”,项目编号:01

Accesses

Citation

Detail

段落导航
相关文章

/