基于卡尔曼滤波和UD分解的姿态测量算法设计

杨雁宇, 任建军, 孙国先

电脑与电信 ›› 2025, Vol. 1 ›› Issue (3) : 18-21.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (3) : 18-21.
算法研究

基于卡尔曼滤波和UD分解的姿态测量算法设计

  • 杨雁宇, 任建军, 孙国先
作者信息 +

Design of Attitude Measurement Algorithm Based on Kalman Filter and UD Decomposition

  • YANG Yan-yu, REN Jian-jun, SUN Guo-xian
Author information +
文章历史 +

摘要

针对传统组合导航仿真算法在MEMS惯性器件和工业级处理器搭建的硬件平台上实现时,面临处理器算力不够和有效位数少进而导致的解算实时性及精度较差的问题,通过量化MEMS惯性器件的噪声与误差项的量级,简化卡尔曼滤波误差方程,并采取UD分解算法,优化后的算法运算速度提升了17%,充分证明优化算法的有效性,并最终实现由MEMS器件组成的低成本姿态测量系统,经过跑车试验验证,航向角精度达到0.5°,水平姿态角精度达到0.2°,解决了导航数据输出实时性和解算精度较差的问题。

Abstract

Aiming at the two problems of poor real-time performance and calculation accuracy caused by insufficient processor computing power and limited effective bits when implementing traditional integrated navigation simulation algorithms on hardware platforms built with MEMS inertial devices and industrial-grade processors, this study quantifies the noise and error magnitudes of MEMS inertial devices, simplifies Kalman filter error equations, and adopts UD decomposition algorithm. The optimized algorithm achieves 17% improvement in computational speed, effectively demonstrating its validity. Ultimately it is implemented on a low-cost attitude measurement system composed of MEMS devices. Vehicle tests verify that the heading angle accuracy reaches 0.5° and horizontal attitude angle accuracy reaches 0.2°, successfully resolving the issues of real-time navigation data output and computational precision.

关键词

低成本 / 姿态测量 / 卡尔曼滤波

Key words

low-cost / attitude measurement / Kalman filter

引用本文

导出引用
杨雁宇, 任建军, 孙国先. 基于卡尔曼滤波和UD分解的姿态测量算法设计[J]. 电脑与电信. 2025, 1(3): 18-21
YANG Yan-yu, REN Jian-jun, SUN Guo-xian. Design of Attitude Measurement Algorithm Based on Kalman Filter and UD Decomposition[J]. Computer & Telecommunication. 2025, 1(3): 18-21
中图分类号: U249.328   

参考文献

[1] 王江荣. 基于卡尔曼滤波算法的最小二乘拟合及应用[J].自动化与仪器仪表,2013(3):140-142.
[2] 马高印,郭中洋,刘飞,等.基于MCM&SOC方案的微惯性器件系统集成技术综述[J].导航定位与授时,2019,6(1):108-115.
[3] 张楠,崔厚坤,徐伟周.IMU姿态解算的卡尔曼滤波方法比较[J].河南科技,2023,42(11):24-29.
[4] Huiliang C,Yupeng L,Li L,et al.Humidity Drift Modeling and Compensation of MEMS Gyroscope Based on IAWTD-CSVM-EEMD Algorithms[J].IEEE ACCESS,2021,995686-95701.
[5] 王彤,匡乃亮,钟升,等.基于四元数矢量平均的阵列MEMS-IMU轴对准及姿态解算方法[J].中国惯性技术学报,2023,31(7):642-649.
[6] 李文良,颜斌,冯彬.基于单片机的互补滤波与四元数滤波的研究[J].电子制作,2024,32(11):37-39+18.
[7] 冯鹏,邹世开.卡尔曼滤波器UD分解滤波算法的改进[J].遥测遥控,2005(1):10-14.
[8] 郜福全,陈丽容,丁传红,等.UD分解自适应滤波在SINS初始对准中的应用[J].计算机工程与设计,2014,35(1):158-162+212.
[9] 苑艳华,李四海,南江.基于卡尔曼滤波器的航姿系统测姿算法研究[J].传感技术学报,2011,24(12):1718-1722.

Accesses

Citation

Detail

段落导航
相关文章

/