凭借速度和精度之间的良好平衡,YOLO(You Only Look Once)框架已成为目标检测最有效的算法之一。在医学脑肿瘤检测领域,基于YOLOv8算法提出了一种改进后的创新算法YOLOv8-BBS。它将双层路由注意力机制(BRA,Bi-Level Routing Attention)与双模态注意力机制(BiFormer)两种注意力机制,构建成双层特征融合框架,巧妙融合在YOLOv8的骨干网络中,实现全面捕捉图像细节与全局特征;为了解决数据集类别不平衡及样本识别难的问题,本算法引入了滑动损失函数SlideLoss,实现类别权重的动态调整,增强数据分类的准确性与鲁棒性。在脑肿瘤MRI数据集上的实验结果表明,本文提出的模型在速度和准确性方面优于YOLOv5、YOLOv8、YOLOv9和YOLOv10,YOLOv8-BBS的F1分数相较于YOLOv8提高了1%,准确率达到了81.8%,召回率为72.7%,证实了该模型在脑肿瘤检测中的有效性,为后续的医学成像和临床疾病诊断中的物体检测应用提供了新的思路。
Abstract
With a good balance between speed and accuracy, YOLO (You Only Look Once) framework has become one of the most effective algorithms for object detection. In the field of medical brain tumor detection, this paper proposes an improved and innovative algorithm, YOLOv8 - BBS, based on the YOLOv8 algorithm. It constructs a two - layer feature fusion framework by combining two attention mechanisms, namely the Bi - Level Routing Attention (BRA) and the Bi - modal Attention mechanism (BiFormer), and skillfully integrates this framework into the backbone network of YOLOv8. This enables the algorithm to comprehensively capture image details and global features. To address the problems of class imbalance in the dataset and the identification of difficult samples, this algorithm introduces the SlideLoss function, which dynamically adjusts the class weights, enhancing the accuracy and robustness of data classification. Experimental results on the brain tumor MRI dataset show that the model proposed in this paper outperforms YOLOv5, YOLOv8, YOLOv9, and YOLOv10 in terms of both speed and accuracy. The F1 - score of YOLOv8 - BBS is 1% higher than that of YOLOv8, with an accuracy rate of 81.8% and a recall rate of 72.7%. These improvements confirm the effectiveness of the model in brain tumor detection and provide new ideas for subsequent object detection applications in medical imaging and clinical disease diagnosis.
关键词
YOLOv8 /
脑肿瘤检测 /
BRA /
BiFormer /
SlideLoss损失函数
Key words
YOLOv8 /
brain tumor detection /
BRA /
BiFormer /
SlideLoss loss function
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈炜越,冯烨,陈敏江,等.影像人工智能在肿瘤精准分型诊断中的研究现状及展望[J].温州医科大学学报,2024,54(12):947-953.
[2] 吴波,史东辉,吕东来,等.基于联邦学习与改进CBAM-ResNet18的脑肿瘤分类[J].计算机系统应用,2024,33(4):39-49.
[3] 吴怡广. 基于深度学习的医学影像的研究[D].成都:电子科技大学,2024.
[4] P.K.Ramtekkar,A.Pandey,and M.K.Pawar.A comprehensive review of brain tumour detection mechanisms[J].Comput.J.,2024,67(3):1126-1152.
[5] 刘子洋,徐慧英,朱信忠,等.Bi-YOLO:一种基于YOLOv8n改进的轻量化目标检测算法[J].计算机工程与科学,2024,46(8):1444-1454.
[6] 蓝贵文,任新月,徐梓睿,等.基于YOLOv8s的轻量级绝缘子多缺陷检测模型[J].现代电子技术,2024,47(20):72-80.
[7] 欧明望. 基于神经网络的智能医疗诊断研究[D].海口:海南大学,2019.
[8] 姜林奇,宁春玉,余海涛.基于多尺度特征与通道特征融合的脑肿瘤良恶性分类模型[J].中国光学(中英文),2022,15(6):1339-1349.
[9] 周孟然,王皓.基于改进YOLOv7的安全帽佩戴检测算法[J].软件,2024,45(8):14-17.
基金
汕尾职业技术学院智能计算及安全技术研究中心“基于YOLOv8n的学生课堂行为实时检测算法研究”,项目编号:2024XJXM026