摘要
人脸表情识别是计算机视觉领域中人脸识别的一个重要分支。由于人脸表情多样性,头部姿态变化以及表情主
体所处环境等诸多因素的影响,给人脸表情识别的工作带来了很大的挑战。针对采用传统卷积神经网络,由于其模型参数数
量多,且比传统机器学习算法的人脸表情识别精度的提高有限,给出了一种基于深度可分离卷积结构的改进卷积神经网络模
型。基于该模型对Fer2013灰度表情识别数据集进行实验,结果表明,在保证了68.31% 的较高准确率情况下,与传统卷积神经
网络相比,模型的网络结构得到了优化,模型参数数量大大减少,且模型参数的利用效率较高。
Abstract
Facial expression recognition is an important branch of facial recognition in the field of computer vision. Influenced by
many factors including the diversity of facial expressions, changes in head posture and the environment, it is a big challenge to the
work of facial expression recognition. Focused on traditional convolutional neural network, owning to its large number of parame-
ters and the limited improvement in facial expression recognition accuracy compared with applying traditional machine learning al-
gorithms, we proposes an improved convolutional neural network model based on the depthwise separable convolution structure. We
make the experiment on the Fer2013 gray expression recognition dataset based on our model, the result shows that the network struc-
ture of the model is optimized, the number of model parameters is greatly reduced, and the utilization efficiency of model parame-
ters is high, while ensuring a high accuracy rate of 68.31% compared to the traditional convolutional neural network.
关键词
人脸表情识别 /
卷积神经网络 /
深度可分离卷积
Key words
facial expression recognition /
convolutional neural network /
depthwise separable convolutions
鞠聪 李涛.
基于深度可分离卷积结构的人脸表情识别研究[J]. 电脑与电信. 2020, 1(6): 1-5
JU Cong LI Tao.
Research on Facial Expression Recognition Based on the Depthwise
Separable Convolution Structure[J]. Computer & Telecommunication. 2020, 1(6): 1-5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
基金
国家自然科学基金项目,项目名称:隐私保护的对抗特征选择及其拓展研究,项目编号:61772284。