Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2024, Vol. 1 Issue (5): 92-    DOI: 10.15966/j.cnki.dnydx.2024.05.017
  应用技术与研究 本期目录 | 过刊浏览 | 高级检索 |
基于SARIMA-ARCH的电量预测模型
1. 六盘水师范学院计算机科学与技术学院 2. 贵州电网有限责任公司六盘水供电局
Electricity Prediction Model Based on SARIMA-ARCH
1. Liupanshui Normal University 2. Liupanshui Power Supply Bureau of Guizhou Power Grid Co.
全文: PDF( KB)  
输出: BibTeX | EndNote (RIS)      
摘要 电量预测是供电单位购电的重要依据,是电力经济稳定运行的根本基础。提出采用SARIMA-ARCH融合模型 对某地区售电量进行预测。首先,采用季节时间序列分析方法(SARIMA)对月度电量时间序列进行建模,通过 ACF和 PACF 图筛选确定出最佳模型阶数,得到季节性时间序列模型(SARIMA)基础预测模型;提取模型残差的波动性,建立自回归条件异 方差(ARCH)模型;最后,将SARIMA-ARCH 模型与常规SRIAM和ARIMA的预测值进行对比分析。结果表明,SARIMAARCH混合模型的预测精度较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 SARIMA 时间序列分析 ARCH效应 售电量    
Abstract:Electricity quantity prediction is an important basis for power supply units to purchase electricity, and it is the fundamen‐ tal foundation for the stable operation of the electricity economy. This article proposes using the SARIMA-ARCH fusion model to predict electricity consumption. Firstly, the seasonal time series model (SARIMA) is used to model the monthly electricity consump‐ tion time series. The optimal model order is determined through ACF and PACF graph screening, and the basic prediction model of the seasonal time series model (SARIMA) is obtained. Subsequently, the regression residuals of the basic model are subjected to ARCH effect testing, and an autoregressive conditional heteroscedasticity (ARCH) model is established. Finally, this article com‐ pares and analyzes the predicted values of the SARIMA-ARCH model with those of conventional SRIAM and ARIMA. The results show that the prediction accuracy of the hybrid model of SARIMA-ARCH is high.
Key wordsSARIMA    time series analysis    ARCH effect    electricity sales
年卷期日期: 2024-05-10      出版日期: 2024-10-12
引用本文:   
许 然  杨黎娜  钟 强. 基于SARIMA-ARCH的电量预测模型[J]. 电脑与电信, 2024, 1(5): 92-.
XU Ran  YANG Li-na  ZHONG Qiang. Electricity Prediction Model Based on SARIMA-ARCH. Computer & Telecommunication, 2024, 1(5): 92-.
链接本文:  
https://www.computertelecom.com.cn/CN/10.15966/j.cnki.dnydx.2024.05.017  或          https://www.computertelecom.com.cn/CN/Y2024/V1/I5/92
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4