Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2021, Vol. 0 Issue (10): 75-79    DOI: 10.15966/j.cnki.dnydx.2021.11.009
  应用技术与研究 本期目录 | 过刊浏览 | 高级检索 |
基于深度卷积网络的地理图像分类研究
晋中学院
Research on Geographic Image Classification Based on Deep Convolution Network
Jinzhong University
全文: PDF( KB)  
输出: BibTeX | EndNote (RIS)      
摘要 
最近五年,卷积神经网络(CNN)得到了充分的发展,在图像分类领域,基于监督学习的算法在相关任务中取得了巨大的成功。但是与分类极为准确地粗粒度标签数据集相比,细粒度标签数据集的分类依旧是一个难点。地理图像被广泛应用于社会的各个方面,研究者往往需要对大规模的地理图像数据进行分类,但是由于地理图像的特征差异较小,因此自动化分类是相对困难的。对地理图像的细粒度特征进行标记,通过深度卷积网络对其进行训练和学习,极大地提高地理图像的分类精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词     
Abstract
In recent five years, convolutional neural network (CNN) has been fully developed. In the field of image classification, the
algorithm based on supervised learning has achieved great success in related tasks. However, compared with coarse-grained label data sets, the classification of fine-grained label data sets is still a difficult point. Geographic images are widely used in all aspects of society. Researchers often need to classify large-scale geographic image data. However, due to the small feature difference of geographic images, automatic classification is relatively difficult. In this paper, the fine-grained features of geographic images are labeled, and trained and learned through the deep convolution network, which greatly improves the classification accuracy of geographic images.

Key words
年卷期日期: 2021-10-10      出版日期: 2021-11-01
作者简介: 张宝燕(1982-),女,山西晋中人,副教授,研究生,研究方向为数据挖掘。
引用本文:   
张宝燕.
基于深度卷积网络的地理图像分类研究
[J]. 电脑与电信, 2021, 0(10): 75-79.
ZHANG Bao-yan.
Research on Geographic Image Classification Based on Deep Convolution Network
. Computer & Telecommunication, 2021, 0(10): 75-79.
链接本文:  
https://www.computertelecom.com.cn/CN/10.15966/j.cnki.dnydx.2021.11.009  或          https://www.computertelecom.com.cn/CN/Y2021/V0/I10/75
[1] 贾 亮 徐善博 邢轶博.
基于FPGA的卷积神经网络图像识别算法研究
[J]. 电脑与电信, 2022, 1(12): 58-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4