融合知识图谱与多模态感知的Linux实验课程评价体系研究

杨程程, 陈勇, 李晟, 闫大顺, 刘同来, 呼增

电脑与电信 ›› 2025, Vol. 1 ›› Issue (9) : 63-67.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (9) : 63-67.
教学改革

融合知识图谱与多模态感知的Linux实验课程评价体系研究

  • 杨程程, 陈勇, 李晟, 闫大顺, 刘同来, 呼增*
作者信息 +

An Evaluation System for Linux Laboratory Courses Integrating Knowledge Graphs and Multimodal Perception

  • YANG Cheng-cheng, CHEN Yong, LI Sheng, YAN Da-shun, LIU Tong-lai, HU Zeng*
Author information +
文章历史 +

摘要

Linux实验课程是计算机类与信息类专业基础核心课程,具有较强的实践性和复杂的操作链条。传统评价系统多依赖学生提交的实验报告,存在结果导向强、缺乏过程分析、情境感知能力不足等问题,难以全面、动态地反映学生实际能力与学习状态。为此,提出一种融合知识图谱与多模态感知的Linux实验课程评价体系,通过融合代码行为分析、语音与表情情感识别、系统操作轨迹提取和知识图谱推理等关键技术,构建覆盖“教—学—评”全过程的智能化评价机制。系统以学生行为日志、语音答辩、表情图像、操作流程、错误类型为多模态输入,利用焦点对比学习机制与Neo4j知识图谱模型实现综合评分与个性化反馈。实验结果表明,该体系在评价准确性、一致性、学生学习动机激发成效等方面取得显著提升,可为Linux等系统类实验课程的教学改革提供新范式与技术支撑。

Abstract

The Linux laboratory course is a fundamental core course for computer science and information related majors, characterized by strong practicality and complex operational chains. Traditional evaluation systems mainly rely on students' submitted lab reports, which are result-oriented, lacking process analysis and contextual awareness, making it difficult to comprehensively and dynamically reflect students’ actual abilities and learning status. To this end, this paper proposes an evaluation system for Linux laboratory courses that integrates knowledge graphs with multimodal perception. It integrates key technologies such as code behavior analysis, speech and facial emotion recognition, system operation trajectory extraction, and knowledge graph reasoning. The system takes multimodal inputs—including student behavior logs, oral defense speech, facial expressions, operation flows, and error types—and applies focal contrastive learning and a Neo4j-based knowledge graph model to achieve comprehensive scoring and personalized feedback. Experimental results demonstrate that the proposed system significantly improves evaluation accuracy, consistency, and the stimulation of students’ learning motivation, providing a new paradigm and technological support for teaching reform in Linux and other system-oriented laboratory courses.

关键词

Linux实验课程 / 知识图谱 / 多模态感知 / 焦点对比学习

Key words

Linux laboratory course / knowledge graph / multimodal perception / focal contrastive learning

引用本文

导出引用
杨程程, 陈勇, 李晟, 闫大顺, 刘同来, 呼增. 融合知识图谱与多模态感知的Linux实验课程评价体系研究[J]. 电脑与电信. 2025, 1(9): 63-67
YANG Cheng-cheng, CHEN Yong, LI Sheng, YAN Da-shun, LIU Tong-lai, HU Zeng. An Evaluation System for Linux Laboratory Courses Integrating Knowledge Graphs and Multimodal Perception[J]. Computer & Telecommunication. 2025, 1(9): 63-67
中图分类号: TP316.8   

参考文献

[1] 孙世昶,林鸿飞,刘爽,等.结合任务驱动和深度学习的人工智能课程教学探索[J].计算机教育,2024(6):84-88.
[2] 唐娟. 人工智能赋能《Linux操作系统应用》课程教学的实践探索[J].中国信息化,2025(4):72-73.
[3] Ouyang F,Dinh T A,Xu W.A systematic review of AI-driven educational assessment in STEM education[J].Journal for STEM Education Research,2023,6(3):408-426.
[4] Salau A O,Jain S.Feature extraction:a survey of the types,techniques,applications[C]//2019 international conference on signal processing and communication (ICSC).IEEE,2019:158-164.
[5] Storcheus D,Rostamizadeh A,Kumar S.A survey of modern questions and challenges in feature extraction[C]//Feature Extraction: Modern Questions and Challenges.PMLR,2015:1-18.
[6] Gandhi A,Adhvaryu K,Poria S,et al.Multimodal sentiment analysis: A systematic review of history, datasets,multimodal fusion methods, applications,challenges and future directions[J].Information Fusion,2023, 91:424-444.
[7] PENGYUE Hou,XINGYU Li.Improving Contrastive Learning of Sentence Embeddings with Focal InfoNCE[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.2023: 4632-4646.
[8] 王全蕊. 具有学习反馈的自适应知识图谱构建——以操作系统课程为例[J].现代信息科技,2024,8(24):182-189.
[9] 熊晓芸,刘秀燕.基于工程教育认证的操作系统课程知识图谱构建研究[J].科技风,2022(5):20-22.
[10] 张迪,吴银芳,吴知.基于Neo4j的高校信息技术课程知识图谱构建及应用研究[J].中国信息技术教育,2025(2):89-92.
[11] Zhang S,Tong H,Xu J,et al.Graph convolutional networks:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23.
[12] Wang X,He X,Cao Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining.2019:950-958.
[13] Debie E,Rojas R F,Fidock J,et al.Multimodal fusion for objective assessment of cognitive workload: A review[J].IEEE transactions on cybernetics,2019,51(3):1542-1555.

基金

教育部产学合作协同育人项目“产教融合视域下Linux操作系统课程教学内容与实践体系改革研究”,项目编号:250503492302259; 广东省自然科学基金面上项目“基于区块链的高效农产品质量安全可信追溯模型及系统研究”,项目编号:2023A1515011230

Accesses

Citation

Detail

段落导航
相关文章

/