汽车保养智能记录与推荐系统的设计与实现

张根

电脑与电信 ›› 2025, Vol. 1 ›› Issue (9) : 45-51.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (9) : 45-51.
应用技术与研究

汽车保养智能记录与推荐系统的设计与实现

  • 张根
作者信息 +

Design and Implementation of an Intelligent Record and Recommendation System for Automobile Maintenance

  • ZHANG Gen
Author information +
文章历史 +

摘要

针对当前车主保养记录分散、提醒缺乏针对性的核心痛点,结合2024年中国汽车后市场多样化发展趋势,设计并实现汽车保养智能记录与推荐系统。系统以智能记录和精准提醒为核心,构建感知层、数据层、应用层三层架构:感知层采集图片单据,集成YOLO v8定位并校正单据区域,使用OCR 技术提取VIN码;数据层采用MySQL主从架构、Redis缓存与阿里云OSS,存储车辆档案和保养记录等信息;应用层基于三维因子生成精准提醒,并结合用户的反馈动态迭代系统消息提醒策略。测试结果表明,系统单据关键信息识别准确率达99.5%,记录查询响应≤1秒,可有效减少人工录入操作,解决传统保养管理效率低、提醒针对性不强的问题,为车主提供轻量化、高易用性的一站式保养管理服务。

Abstract

Aiming at the core pain points of current car owners, such as scattered maintenance records and lack of targeted reminders, and combining with the diversified development trend of China's automobile aftermarket in 2024, an intelligent record and recommendation system for automobile maintenance is designed and implemented. With intelligent recording and accurate reminders as the core, the system constructs a three-layer architecture consisting of a perception layer, a data layer, and an application layer: The perception layer collects image documents, integrates YOLOv8 to locate and correct document areas, and uses OCR (Optical Character Recognition) technology to extract VIN (Vehicle Identification Number) codes. The data layer adopts MySQL master-slave architecture, Redis cache, and Alibaba Cloud OSS (Object Storage Service) to store information such as vehicle files and maintenance records. The application layer generates accurate reminders based on three-dimensional factors and dynamically iterates the system message reminder strategy in combination with user feedback.Test results show that the recognition accuracy of key information in system documents reaches 99.5%, and the record query response time is less than 1 second. The system can effectively reduce manual entry operations, solve the problems of low efficiency of traditional maintenance management and lack of targeted reminders, and provide car owners with a lightweight and highly user-friendly one-stop maintenance management service.

关键词

汽车保养 / 系统架构 / YOLO v8 / OCR / XGBoost

Key words

automobile maintenance / system architecture / YOLO v8 / OCR / XGBoost

引用本文

导出引用
张根. 汽车保养智能记录与推荐系统的设计与实现[J]. 电脑与电信. 2025, 1(9): 45-51
ZHANG Gen. Design and Implementation of an Intelligent Record and Recommendation System for Automobile Maintenance[J]. Computer & Telecommunication. 2025, 1(9): 45-51
中图分类号: TP311.52   

参考文献

[1] 蔡金兰,于昆.新形势下汽车后市场维修保养服务认证应用及关键技术研究[J].汽车与配件,2022,(6):44-47.
[2] 汤初红. 汽车维护保养对车辆寿命的影响研究[C]//中国智慧工程研究会.2024智慧施工与规划设计学术交流会论文集.武义平安汽车销售有限公司,2024:808-810.
[3] 赵珣,张新峰,边浩南.基于Faster-RCNN和先验知识的车架VIN码识别方法[J].计算机应用与软件,2024,41(1):177-182.
[4] 马宇昂,金佣杰,姚雅雯,等.基于人因工程学的业务软件人机交互技术应用[J].计算机与网络,2025,51(3):240-245.
[5] 王位明.基于在线评测的主从式数据库信息快速同步方法研究[J].现代计算机,2024,30(20):68-71+81.
[6] 代志涛,孙曌华,杨县委.基于MySQL与Redis的数据一致性同步与修复方法研究[J].软件,2025,46(5):12-17.
[7] 郝淼闻. 区块链应用于学术出版的软件系统设计[J].科技传播,2022,14(23):118-121.
[8] 朱玲丽,吴许俊,安尘潇,等.基于YOLOv8模型的车牌自动识别系统设计[J].计算机时代,2025(8):52-56+60.
[9] 焦朋朋,陈世杰,罗薇,等.基于可解释性机器学习的公交出行选择行为影响因素研究[J].北京建筑大学学报,2025,41(3):66-77.
[10] 何浩辰,李姗姗,贾周阳,等.基础软件性能缺陷检测研究综述[J].计算机学报,2025,48(1):210-233.

Accesses

Citation

Detail

段落导航
相关文章

/