传统的校园霸凌干预措施主要依赖于教师和学生的主动报告以及学校管理层的定期巡查和查看监控,但这些方法往往存在滞后性和过多的人力消耗,难以及时发现和处理霸凌行为。基于深度学习的校园霸凌监控系统,旨在为校园安全提供有力保障,为学生的心理健康提供保障。本研究以YOLOv8目标检测算法和3D ResNet行为分析为核心技术,采用舵机动态跟踪技术,结合目标检测、行为分析、动态跟踪等模块,构建了一个全方位、智能化的校园霸凌监控系统。系统通过对校园内监控实时视频流的高效处理和深度分析,能够快速准确地识别潜在的霸凌行为,并及时发出预警通知,以便管理人员迅速采取干预措施。此外,该系统还配备了“微光心愈屋”小程序,为受害者提供情感支持和心理慰藉,帮助其缓解心理压力,结合AI智能聊天功能,帮助学生和教师更好地了解校园霸凌安全问题,营造一个更加安全、和谐的校园环境。
Abstract
Traditional anti-bullying interventions in schools rely primarily on proactive reports from teachers and students, together with periodic inspections and surveillance by administrators. These approaches are untimely reactive and labor-intensive, which makes timely detection and response to bullying incidents difficult. A deep-learning-based campus-bullying monitoring system that provides robust protection for campus security and safeguards the mental health of students. The system integrates YOLOv8 for object detection and 3D ResNet for action recognition as its core algorithms, while leveraging servo-driven dynamic tracking as its enabling hardware technology. By combining modules for object detection, action analysis, and dynamic tracking, we construct a comprehensive and intelligent monitoring framework. By processing and analyzing live surveillance streams in real time, the system can rapidly and accurately identify potential bullying behaviors and promptly issue early-warning notifications so that administrators can intervene without delay. In addition, the system includes the “Glimmer Haven” mini-program, which offers emotional support and psychological solace to victims, alleviating their mental distress. An AI-powered chatbot further assists students and faculty in understanding and addressing campus-bullying issues, thereby fostering a safer and more harmonious school environment.
关键词
目标检测 /
行为分析 /
校园安防 /
舵机动态跟踪 /
心理健康干预
Key words
object detection /
action recognition /
campus security /
servo-driven dynamic tracking /
mental-health intervention
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王乐. 基于DT-SVM的校园霸凌检测算法[D].哈尔滨:哈尔滨工业大学, 2019.
[2] 陈天宇. 面向视频监控的群体异常行为检测方法研究[D].天津:天津大学,2017.
[3] He K,Zhang X,Ren S,et al.Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2016:770-778.
[4] Redmon J,Divvala S,Girshick R,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//Computer Vision & Pattern Recognition.IEEE,2016.
[5] Hara K,Kataoka H,Satoh Y.Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:18-23.
[6] 韩晓冰,王雨田,黄综浏,等.改进YOLOv5+DeepSort的行人跟踪算法[J].现代电子技术,2023, 46(7):33-38.
[7] Kaur N.Real Time Automatic Object Tracking by Pan-Tilt-Zoom cameras in an IP-Surveillance System[J].International Journal Of Computational Engineering Research,2012(6):2250-3005.
[8] Talaat A S.Sentiment analysis classification system using hybrid BERT models[J].Journal of Big Data,2023,10:110.
[9] Pei J,Wu Z,Wang J,Shi D.Robust local PMU measurement recovery based on singular spectrum analysis of Hankel structures[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC).Nanjing,China:IEEE, 2021:4233-4239.
基金
2025年度湖南省大学生创新训练计划项目“‘瞭望塔’——基于深度学习的校园霸凌监控系统”; 湖南科技学院2024年度大学生科研创新探索项目“‘瞭望塔’——基于AI深度学习的校园霸凌监控系统”; 2025年度湖南省自然科学基金项目,项目编号:No.2025JJ70525; 2023年度湖南省教育厅一般科研项目,项目编号:No.23C0358; 2024年永州市级指导性计划科研课题,项目编号:No.2024YZ014; 2024年湖南科技学院科学研究项目,项目编号:No.24XKYZZ12,No.24XKYZZ01; 湖南省普通高等学校科研创新平台“脑网络健康大数据研究与应用”支持计划项目; 湖南省普通高等学校科技创新团队“脑网络健康大数据研究与应用”支持计划项目