海洋微型生物的研究需要真正走到海洋环境中进行现场观测才可以获取真实可靠的数据。利用NI CompactRIO集成化控制器基于有限状态机设计了一款船载海水样品自动采集分配系统。该系统部署于科考船舶之上,在远程控制或者本地控制模式下,可以与布置于船艉的采水绞车系统以及微型生物流式图像分析仪等仪器设备建立通信连接,实现海水样品的全自动或半自动抽取、过滤、输送与全程管路自动清洗功能。运行结果表明,单次采集、过滤海水样品(以10 L为例)平均时间为15 s,相较于传统手工处理,效率提升12倍。同时,系统可以在线监测温度、盐度、溶解氧、电导率、叶绿素等多种水质参数并上传至管理平台存储。系统基于可靠、稳定的嵌入式平台设计,有利于在海洋环境中长期运行,最大限度地保持海水样品原貌,保证分析检测数据的真实性和有效性。
Abstract
On-site observation in the marine environment is required to obtain real and reliable data for research on marine microorganisms. This article presents an automatic seawater sample collection and distribution system for ships based on the NI CompactRIO. The system is deployed on scientific research vessels and establishes connections with instruments such as the winch system at the stern of the vessel and microbial flow image analyzer, under the control of the management system, achieving fully automatic or semi-automatic extraction, filtration, transportation, and automatic cleaning of the entire pipeline of seawater samples. The system can also monitor various water quality parameters such as temperature, salinity, dissolved oxygen, conductivity, chlorophyll, etc. online and upload to the system for storage. The system is designed based on a reliable and stable embedded hardware system, which is conducive to long-term operation in marine environments, maximizing the preservation of the original appearance of seawater samples, and ensuring the authenticity and effectiveness of analysis and detection data.
关键词
海洋 /
微生物 /
集成化控制器 /
海水样品 /
采集分配
Key words
marine /
microorganism /
integrated controller /
seawater samples /
collection and distribution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 焦念志,梁彦韬,张永雨,等.中国海及邻近区域碳库与通量综合分析[J].中国科学:地球科学,2018,48(11):1393-1421.
[2] LE QUERE C,ANDREW R M, FRIEDLINGSTEIN P,et al.Global carbon budget 2018[J].Earth System Science Data,2018,10(4):2141-2194.
[3] LEGENDRE L,RIVKIN R B,WEINBAUER M G,et al.The microbial carbon pump concept:potential biogeochemical significance in the globally changing ocean[J].Progress in Oceanography,2015,134:432-450.
[4] FRIEDLINGSTEIN P,O’SULLIVAN M,JONES M W,et al.Global carbon budget 2019.Earth System Science Data,2019,11(4):1783-1838.
[5] RUDDIMAN W F.A paleoclimatic enigma?[J].Science,2010,328(5980):838-839.
[6] CHISHOLM S W.Stirring times in the southern ocean[J].Nature,2000,407(6805):685-687.
[7] VOLK T, HOFFERT M I.Ocean carbon pumps:analysis of relative strengths and efficiencies in ocean-drive atmospheric CO2 changes[M].[S.1.] :Wiley,1985.
[8] JIAO N Z,HERNDL G J,HANSELL D A,et al.Microbial production of recalcitrant dissolved organic matter:long-term carbon storage in the global ocean[J].Nature Reviews Microbiology,2010,8(8):593-599.
[9] HEDGES J I.Global biogeochemical cycles:progress and problems[J].Marine Chemistry,1992,39(1/2/3):67-93.
[10] FOLLETT CL,REPETA D J,ROTHMAN D H,et al.Hidden cycle of dissolved organic carbon in the deepocean[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(47):16706-16711.
[11] ZHANG C L,DANG H Y,AZAM F,et al.Evolving paradigms in biological carbon cycling in the ocean[J].National Science Review,2018,5(4):45-63
[12] 邹逢兴. 微型计算机接口原理与技术[M].第二版.北京:国防科技大学出版社,1999.
[13] 李程达. 基于UNO-2178A的远程自动化水质监测系统[J].物联网技术,2019,9(6):17-19.
[14] Drumea A,Popescu C.Finite state machines and their applications in software for industrial control[C]//27th International Spring Seminar on Electronics Technology:Meeting the Challenges of Electronics Technology Progress,2004.
基金
福建省中青年教师教育科研项目“用于滨海水体采样的两栖机器人自主决策及障碍识别研究”,项目编号:JAT241317; 福建省自然科学基金计划面上项目“肥化海洋增汇与水体碱化的负碳关键技术”,项目编号:2024J01059