新汽车消费预测中主流分类算法的性能比较与适配性研究

葛艳娜, 陈春娣, 理艳荣, 朱士玲

电脑与电信 ›› 2025, Vol. 1 ›› Issue (9) : 27-32.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (9) : 27-32.
算法研究

新汽车消费预测中主流分类算法的性能比较与适配性研究

  • 葛艳娜, 陈春娣, 理艳荣, 朱士玲
作者信息 +

A Comparative Study on Performance and Adaptability of Mainstream Classification Algorithms in New Automobile Consumption Prediction

  • GE Yan-na, CHEN Chun-di, LI Yan-rong, ZHU Shi-ling
Author information +
文章历史 +

摘要

以客户是否购买新车型为预测目标,对比分析逻辑回归(LR)、K近邻(KNN)、高斯朴素贝叶斯(GaussianNB)和支持向量机(SVM)四种分类算法的性能。基于汽车消费相关数据,经数据预处理后,针对各模型开展超参数调优:为逻辑回归优化正则化参数与惩罚项;对于 KNN 算法,需调整近邻数量并选择适宜的距离度量方式;对于高斯朴素贝叶斯,则要验证特征独立性假设的适配程度并进行相应微调;为SVM优化核函数、正则化系数等关键参数。经训练与测试评估,调优后SVM的综合表现突出,AUC达0.965,预测准确率为93%;KNN、高斯朴素贝叶斯AUC均为0.963,准确率均为93%;逻辑回归AUC为0.955,准确率为91%。研究表明,SVM在非线性数据拟合上优势显著,适用于汽车消费预测场景,为企业精准制定营销策略提供有力的数据支持和决策依据。

Abstract

Focusing on the prediction of customers' new car model purchase behavior, this paper carries out a comparative analysis on the performance of four classification algorithms: Logistic Regression (LR), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GaussianNB), and Support Vector Machine (SVM). Based on data related to car consumption, following data preprocessing, hyperparameter tuning is performed for each model. For Logistic Regression, the regularization parameters and penalty terms are optimized. For the KNN algorithm, the number of neighbors is adjusted, and an appropriate distance measurement method is selected. For Gaussian Naive Bayes, the adaptability of the feature independence assumption is verified, and corresponding fine-tuning is carried out. Optimization is performed on key parameters of SVM, including the kernel function and regularization coefficient. After training and testing evaluation, the SVM demonstrates outstanding comprehensive performance after tuning, with an AUC reaching 0.965 and a prediction accuracy of 93%. Both KNN and Gaussian Naive Bayes achieve an AUC of 0.963 and an accuracy of 93%, while Logistic Regression has an AUC of 0.955 and an accuracy of 91%. The research shows that SVM has significant advantages in fitting nonlinear data, is suitable for the car consumption prediction scenario, and provides powerful data support and decision basis for enterprises to develop targeted marketing strategies.

关键词

分类算法 / 汽车消费预测 / 性能比较 / 适配性研究

Key words

classification algorithms / automobile consumption prediction / performance comparison / adaptability research

引用本文

导出引用
葛艳娜, 陈春娣, 理艳荣, 朱士玲. 新汽车消费预测中主流分类算法的性能比较与适配性研究[J]. 电脑与电信. 2025, 1(9): 27-32
GE Yan-na, CHEN Chun-di, LI Yan-rong, ZHU Shi-ling. A Comparative Study on Performance and Adaptability of Mainstream Classification Algorithms in New Automobile Consumption Prediction[J]. Computer & Telecommunication. 2025, 1(9): 27-32
中图分类号: R614   

参考文献

[1] StuartRussell,PeterNorvig.人工智能:现代方法(第4版)(上下册).(美)斯图尔特·罗素,彼得·诺维格著,张博雅,等译[M].北京:人民邮电出版社.2004.
[2] 张轶. 基于改进逻辑回归模型的数据预测与校验技术[J].信息技术,2025(5):57-61,68.
[3] 吕宁. 融合XGBoost和逻辑回归算法的电信客户流失预测模型[J].现代电子技术,2025,48(11):136-143.
[4] 田文娜. 基于KNN算法的电力计量异常数据检测模型优化研究[J].自动化应用,2025,66(10):165-170.
[5] 王海燕,焦增晨,赵剑,等.基于Bayes超参数优化梯度提升树的心脏病预测方法[J].吉林大学学院(理学版),2025,63(2):472-478.
[6] 卫苗苗. 基于支持向量机方法的气候变化影响下台风生成预测建模[J].东南大学学报(自然科学版) ,2025:1-10.
[7] 高海宾. 一种融合贝叶斯优化的 K 最近邻分类算法[J].绵阳师范学院学报(自然科学版),2025,44(5):79-87.

基金

广州商学院校级科研项目,项目编号:XJYXKC202539; 广东省高等教育教学改革项目“基于OBE理念的大数据专业项目导向教学模式研究与实践”,项目编号:2023JXGG05

Accesses

Citation

Detail

段落导航
相关文章

/