Coze平台驱动的课程作业智能考核工作流构建与实践

潘莹

电脑与电信 ›› 2025, Vol. 1 ›› Issue (8) : 67-72.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (8) : 67-72.
应用技术与研究

Coze平台驱动的课程作业智能考核工作流构建与实践

  • 潘莹
作者信息 +

Coze-based Intelligent Workflow for Automated Coursework Assessment: Framework and Implementation

  • PAN Ying
Author information +
文章历史 +

摘要

针对数据分析与挖掘技术课程作业人工考核效率低、反馈同质化问题,研究基于Coze平台构建智能考核工作流,通过设计“本地预处理—云端分析”混合架构,融合知识库检索与大模型提示词工程技术,实现作业文本解析、代码评估及个性化反馈的全流程自动化。实践表明,该方案使单份作业批改耗时从120秒降至6秒(耗时降低95%),在56名学生样本中评分结果与教师评价显著相关。研究成果为教育数字化转型提供了可跨学科迁移的智能考核范式。

Abstract

To address the inefficiencies in manual grading and homogeneous feedback for assignments in the Data Analysis and Mining Technology course, this study constructs an intelligent assessment workflow based on the Coze platform. By designing a "local preprocessing-cloud analysis" hybrid architecture and integrating knowledge base retrieval with large language model prompt engineering, the research realizes end-to-end automation of assignment text parsing, code evaluation, and personalized feedback generation. Empirical results show that the solution reduces the grading time for a single assignment from 120 seconds to 6 seconds (a 95% time reduction), and the automated scores demonstrate a significant correlation with instructor evaluations in a sample of 56 students. The findings provide a cross-disciplinary adaptable paradigm for intelligent assessment in the context of educational digital transformation.

关键词

Coze平台 / 智能考核工作流 / 数据分析与挖掘技术 / 教育信息化 / 提示词工程

Key words

Coze platform / intelligent assessment workflow / data analysis and mining technology / educational digitalization / prompt engineering

引用本文

导出引用
潘莹. Coze平台驱动的课程作业智能考核工作流构建与实践[J]. 电脑与电信. 2025, 1(8): 67-72
PAN Ying. Coze-based Intelligent Workflow for Automated Coursework Assessment: Framework and Implementation[J]. Computer & Telecommunication. 2025, 1(8): 67-72
中图分类号: TP311.1-4    G642   

参考文献

[1] 黄恒君,任丽鑫.大数据时代数据分析课程教学质量实时控制策略——基于重抽样技术的课程作业方案[J].兰州工业学院学报,2022,29(1):128-134.
[2] 吴健波,厉伟.高校青年教师科研减负政策执行中的问题与对策研究[J].中国高校科技,2024(12):14-19.
[3] 王树义,张庆薇,张晋.AIGC时代的科研工作流:协同与AI赋能视角下的数字学术工具应用及其未来[J].图书情报知识,2023,40(5):28-38+126.
[4] 吴亦舜. 基于Coze智能体平台的跨层次课程教学设计框架——以编程实践为例[J].电脑与电信,2025(3):62-66.
[5] 伊丽梅. “扣子”智能体在高中生物学教学中的应用[J]. 生物学教学,2025,50(1):49-52.
[6] 何科,江雅珍,李良晨.基于Coze平台构建的锻造仿真软件的智能问答工作流研究——大语言模型与结构化知识库的协同应用[J].锻造与冲压,2025(7):20+22+24.
[7] 字节跳动. 平台架构[EB/OL].[2024-7-17].https://www.coze.cn/open/docs/guides/architecture.
[8] 周洁,王东毅,代沁泉,等.生成式AI对话中的提示词策略有效性探究[J/OL].数据分析与知识发现,1-17[2025-06-20].http://kns.cnki.net/kcms/detail/10.1478.g2.20250418.1117.002.html.

Accesses

Citation

Detail

段落导航
相关文章

/