基于深度LSTM的MST雷达中间层数据优化

张烨, 杨逍, 陈世国, 黄日顺

电脑与电信 ›› 2025, Vol. 1 ›› Issue (8) : 54-60.

电脑与电信 ›› 2025, Vol. 1 ›› Issue (8) : 54-60.
网络与通信

基于深度LSTM的MST雷达中间层数据优化

  • 张烨, 杨逍, 陈世国, 黄日顺
作者信息 +

Mid-layer Data Optimization of MST Radar Based on Deep LSTM

  • ZHANG Ye, YANG Xiao, CHEN Shi-guo, HUANG Ri-shun
Author information +
文章历史 +

摘要

在大气动力学研究中,大气风场数据是分析大气动力特性、动力过程以及大气相互作用的重要参数。然而,受多种因素影响,MST(中层—平流层—对流层雷达,Mesosphere-Stratosphere-Troposphere Radar)在对中层高空区域进行探测时,往往无法获得完整的中间层风场数据。为解决这一问题,本研究引入了深度长短期记忆(Long Short-Term Memory, LSTM)时序预测模型,用于补全缺失的风场数据。在传统LSTM时序预测模型的基础上,通过增加网络层数来捕捉数据之间更深层次的关系,从而构建了基于深度LSTM循环神经网络的预测模型,并对模型进行了参数调优。选用武汉MST雷达(崇阳站)大气中间层水平风场数据作为输入,进行模型训练与测试。实验结果表明,深度LSTM循环神经网络在风速预测方面展现出良好的预测性能,所预测的风速与实测数据高度吻合。此外,深度LSTM模型在数据拟合方面具有较强的适应性,能够有效地对缺失数据进行补充,并展现出较好的预测能力。

Abstract

In the study of atmospheric dynamics, atmospheric wind field data is an important parameter for analyzing the dynamic characteristics, dynamic processes and atmospheric interactions of the atmosphere. However, affected by various factors, when MST (Mesosphere-Stratosphere-Troposphere Radar) detects the upper middle layer area, it often fails to obtain complete wind field data of the middle layer. To solve this problem, this study introduces the Deep Long Short-Term Memory (LSTM) time series prediction model to complete the missing wind field data. Based on the traditional LSTM time series prediction model, by increasing the number of network layers to capture the deeper relationships between data, a prediction model based on the deep LSTM recurrent neural network is constructed, and the parameters of the model are optimized. The horizontal wind field data of the atmospheric middle layer of the Wuhan MST radar (Chongyang Station) is selected as the input for model training and testing. The experimental results show that the deep LSTM recurrent neural network exhibits excellent prediction performance in wind speed prediction, and the predicted wind speed is highly consistent with the measured data. Furthermore, the deep LSTM model has strong adaptability in data fitting, can effectively supplement the missing data, and shows good predictive ability.

关键词

MST雷达 / 深度LSTM模型 / 大气中间层

Key words

MST radar / deep LSTM model / atmospheric intermediate layer

引用本文

导出引用
张烨, 杨逍, 陈世国, 黄日顺. 基于深度LSTM的MST雷达中间层数据优化[J]. 电脑与电信. 2025, 1(8): 54-60
ZHANG Ye, YANG Xiao, CHEN Shi-guo, HUANG Ri-shun. Mid-layer Data Optimization of MST Radar Based on Deep LSTM[J]. Computer & Telecommunication. 2025, 1(8): 54-60
中图分类号: P412.25   

参考文献

[1] 张维帆. 基于MST雷达观测的中间层风场研究[D].武汉:武汉大学,2021.
[2] 曾荒原,龚晚林,周晓明,等.基于武汉MST雷达的对流层异常强反射回波观测[J].太赫兹科学与电子信息学报,2022,20(8):824-829.
[3] 肖图刚,王涵玉,文旭光,等.基于深度神经网络的高铁沿线风速风向联合预测研究[J].铁道标准设计,2025,69(5):73-78+94.
[4] 熊龙祥,涂佳黄,廖惠惠.基于LSTM循环神经网络的风力预测研究[J].湘潭大学学报(自然科学版),2023,45(4):118-128
[5] 青海银,赵正予,周晨.基于武汉MST雷达的对流层顶观测研究[J].地球物理学进展,2018,33(4):1395-1402.
[6] 李亚蒙. 基于神经网络方法的海表温盐与风速短期预测研究[D].山东:青岛大学,2023.
[7] 廖雪超,邓万雄.基于两级分解和长短时记忆网络的短期风速多步组合预测模型[J].信息与控制,2021,50(4):470-482.
[8] 廖玲珑. 风电场短期风速预测研究[D].湖南:湖南大学,2017.

Accesses

Citation

Detail

段落导航
相关文章

/