针对地下水位时间序列所表现出的非线性、多尺度波动以及长程依赖等复杂的特性,传统的预测模型通常难以取得理想的预测效果。为提升复杂地下水位时间序列的预测精度,提出了一个结合特定数据预处理与CNN-Informer混合模型的预测框架。该框架首先对数据进行数据清洗、小波去噪以及一种结合极值与数据波动性的自适应重采样算法处理,以此来优化原始的高频数据。紧接着,构建了CNN-Informer模型,运用CNN来提取局部特征,Informer编码器来捕捉长程依赖,并且通过加权融合机制来进行综合性的预测。同时使用江苏丹徒苏18井的实测数据进行验证,结果表明所提出的CNN-Informer模型在MAE、RMSE和NSE等关键指标方面,均优于LSTM、CNN以及单独Informer等基线模型,显示出它在多步预测工作当中具有高精度和良好的鲁棒性。
Abstract
The accurate prediction of the groundwater level is of vital importance for water resource management and disaster prevention and control. In view of the complex characteristics of the groundwater level time series, such as nonlinearity, multi-scale fluctuations and long-range dependence, traditional prediction models often fail to achieve satisfactory results. To improve the prediction accuracy of complex groundwater level time series, this paper proposes a prediction framework that combines specific data preprocessing with the CNN-Informer hybrid model. This framework first performs data cleaning, wavelet denoising and an adaptive resampling algorithm combining extremum and data volatility of the data to optimize the original high-frequency data. Subsequently, the CNN-Informer model is constructed. Local features are extracted using CNN, long-range dependencies are captured by the Informer encoder, and comprehensive predictions are made through the weighted fusion mechanism. Based on the verification of the measured data from Well Su 18 in Dantu, Jiangsu Province, the proposed CNN-Informer model significantly outperforms baseline models such as LSTM, CNN and individual Informer in key indicators such as MAE, RMSE and NSE, demonstrating its high accuracy and robustness in multi-step prediction. This research provides an effective new approach for the precise prediction of groundwater levels.
关键词
Informer /
地下水位预测 /
时间序列 /
CNN /
注意力机制
Key words
Informer /
groundwater level prediction /
time series /
CNN /
attention mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Zhang J,Zhu Y,Zhang X,et al.Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas[J].Journal of hydrology,2018,561:918-929.
[2] 周振民,赵明亮,李玲.GM (1,1)模型在滦河下游地区地下水位预测中的应用[J].中国农村水利水电,2011 (2):50-52.
[3] Nguyen T T,Le H T T.Water level prediction at tich-bui river in vietnam using support vector regression[C]//2019 International Conference on Machine Learning and Cybernetics (ICMLC).IEEE,2019:1-6.
[4] 闫佰忠,孙剑,王昕洲,等.基于多变量LSTM神经网络的地下水水位预测[J].吉林大学学报(地球科学版),2020,50(1):208-216.
[5] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C].Advances in neural information processing systems.2017:5998-6008.
[6] 冯鹏宇,金韬,沈一选,等.基于CNN-Transformer的城区地下水位预测[J].计算机仿真,2023,40(4):492-498.
[7] Zhou H,Zhang S,Peng J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI conference on artificial intelligence.2021,35(12):11106-11115.
[8] Halidou A,Mohamadou Y,Ari A A A,et al.Review of wavelet denoising algorithms[J].Multimedia Tools and Applications,2023,82(27):41539-41569.
[9] 任欢,王旭光.注意力机制综述[J].计算机应用,2021,41(S01):1-6.
[10] Wu N,Green B,Ben X,et al.Deep transformer models for time series forecasting:The influenza prevalence case[J].arXiv preprint arXiv:2001.08317,2020.
基金
廊坊市科学技术研究与发展计划自筹经费项目,项目编号:2024011006