Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信
  基金项目 本期目录 | 过刊浏览 | 高级检索 |
基于大数据的结构化SVM 的黏着语词性标注的研究
河南经贸职业学院
Research onAgglutinating Language Part of Speech Tagging Based on Structured SVM
Henan Institute of Economics and Trade
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统的条件随机场(Conditional Random Fields,CRF)方法虽然可以容纳任意长度的上下文信息且特征设计灵活, 但训练代价大、模型复杂度高,尤其在序列标注任务中由于需要计算整个标注序列的联合概率分布使其缺点更加突出。为此, 结合一种结构化方式的支持向量机(Structured Support Vector Machine,SSVM)方法,根据黏着语的构词特征和语料的上下文信 息进行词性标注研究,本模型相比传统SVM,通过附加额外的约束条件使特征函数能够拟合分布,进而用于处理不同领域内词 性标注。通过相关黏着语词性标注实验结果显示,SSVM的词性标注方法相比传统的词性标注算法,准确率有了一定的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘婉婉
关键词 词性标注支持向量机结构化黏着语    
Abstract:Although the traditional conditional random fields (CRF) method can accommodate any length of context information and the feature design is flexible, but the training cost is high and the model complexity is high, especially in the sequence tagging task,because the joint probability distribution of the whole tagging sequence needs to be calculated, its shortcomings are more exposed.For this reason, this paper combines a structured support vector machine (SSVM) method to do part of speech tagging research according to Agglutinating Language word formation features and context information of corpus. Compared with traditional SVM, this model can fit the distribution of feature functions by adding additional constraints, and then be used to deal with tagging in different fields. In this paper, the Agglutinating Language part of speech tagging experiment results show that the accuracy of SSVM is higher compared with the traditional part of speech tagging algorithm.
Key wordspart of speech tagging    support vector machine    structured;Agglutinating Language
年卷期日期: 2021-01-10      出版日期: 2021-01-10
通讯作者: 刘婉婉(1991-),女,河南洛阳人,助教,硕士,研究方向为大数据、机器翻译。   
引用本文:   
刘婉婉. 基于大数据的结构化SVM 的黏着语词性标注的研究[J]. 电脑与电信, .
LIU Wan-wan. Research onAgglutinating Language Part of Speech Tagging Based on Structured SVM. Computer & Telecommunication, 2021, 1(1): 23-26.
链接本文:  
https://www.computertelecom.com.cn/CN/  或          https://www.computertelecom.com.cn/CN/Y2021/V1/I1/23
[1] 邓红源. 基于支持向量机的雷达信号特征的辨识研究[J]. 电脑与电信, 2020, 1(3): 44-46.
[2] 刘利. 基于多特性融合的代词消解方法研究[J]. 电脑与电信, 2016, 1(11): 42-44.
[3] 杨颖娴 尹方平. Basic Mouth Shape Classification for Expression Analysis [J]. , 2011, 1(05): 0-0.
[4] 戴振华 王建新. 无线传感器网络数据收集技术进展[J]. , 2010, 1(12): 0-0.
[5] 尹 华; 吴 虹. 深度优先算法在多目标SVM模型中的仿真应用[J]. , 2010, 1(08): 0-0.
[6] 陈 蓉. 民族院校网站站群系统的分析与设计[J]. , 2010, 1(01): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4