Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信
  应用技术与研究 本期目录 | 过刊浏览 | 高级检索 |
基于集成学习的交通拥堵预测模型
武汉大学国家网络安全学院 武汉大学测绘学院 武汉大学数学学院
Traffic Congestion Prediction Model Based on Integrated Learning
School of Cyber Science and Engineering School of Geodesy and Geomatics School of Mathematics and Statistics
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田雨 侯乾宝 豆丹 唐健
Abstract:The current navigation software has obvious inaccurate speed assessment when facing some serious traffic congestion, and cannot accurately predict the duration of the traffic congestion. Therefore, we propose a traffic congestion prediction model to accu- rately predict the congestion time in the face of most congestion situations through the prediction of speed. Regarding the speed pre- diction model, we select high-similarity samples based on the KNN algorithm. The prediction speed model is divided into two main models, KNN-VA and KNN-RBF, and we use an integrated learning method to fuse these two models to obtain more accurate aver- age speed prediction. Then, the congestion time can be predicted. In order to determine the congestion time, we use the RBF speed prediction method and the sampling method in a fixed area to verify. The results show that the model has high reliability for conges- tion time prediction.
Key wordscongestion prediction    KNN    RBF    integrated learnin
年卷期日期: 2020-04-10      出版日期: 2020-04-10
引用本文:   
田雨 侯乾宝 豆丹 唐健. 基于集成学习的交通拥堵预测模型[J]. 电脑与电信, .
TIAN Yu HOU Qian-bao DOU Dan TANG Jian . . Computer & Telecommunication, 2020, 1(4): 60-63.
链接本文:  
https://www.computertelecom.com.cn/CN/  或          https://www.computertelecom.com.cn/CN/Y2020/V1/I4/60
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4