Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信
  基金项目 本期目录 | 过刊浏览 | 高级检索 |
基于D H N N 网络的玻尔兹曼机权值计算研究
常州纺织服装职业技术学院 信息服务中心
Research on Weight Calculation of Boltzmann Machine Based on Hopfield Network
Changzhou Vocational Institute of Textile and Garment
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张波
Abstract:In recent years, the theory of deep learning is booming again. It is widely used in machine learning, visual recognition and auditory recognition. Boltzmann machine is a typical deep learning neural network. There are many training algorithms for its net- work weights, such as contrast dispersion (CD) algorithm, which is classical. However, the current algorithm cannot accurately ob- tain the expected value of network thermal equilibrium state. Only approximate gradient values can be calculated. At the same time, the algorithm has a large amount of computation and a long running time. In this paper, a method of RBM weight calculation is pro- posed. Firstly, RBM is equivalent to Hopfield network. Then the weight matrix is designed by DHNN weight design method. Final- ly, the RBM weight solving problem is transformed into the eigenvalue and eigenvector problem of DHNN weight matrix. An exam- ple is given to illustrate the calculation process and the correctness of the algorithm is verified by the data.
Key wordsboltzmann machine    Hopfield network    neuron    weight matrix
年卷期日期: 2020-12-10      出版日期: 2021-02-24
引用本文:   
张波. 基于D H N N 网络的玻尔兹曼机权值计算研究[J]. 电脑与电信, .
ZHANG Bo. Research on Weight Calculation of Boltzmann Machine Based on Hopfield Network. Computer & Telecommunication, 2020, 1(12): 53-57.
链接本文:  
https://www.computertelecom.com.cn/CN/  或          https://www.computertelecom.com.cn/CN/Y2020/V1/I12/53
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4