面向生态系统服务价值的组合预测算法研究

电脑与电信 ›› 2020, Vol. 1 ›› Issue (1-2) : 61-64.

电脑与电信 ›› 2020, Vol. 1 ›› Issue (1-2) : 61-64.
综述

面向生态系统服务价值的组合预测算法研究

作者信息 +

Research on Combination ForecastingAlgorithm for Ecosystem Service Value

  • ZHANG Jun-ru ZHANG Jia-lei
Author information +
文章历史 +

Abstract

In order to solve the problems of single evaluation and low prediction accuracy in the current ecological environment service value system, this paper puts forward three dynamic combination forecasting systems for ecosystem service value, namely ARI- MA-BP, PCABP-ARIMA and PCABP ARIMA prediction model, and makes an empirical analysis on the ecosystem service value prediction of grassland in Tibet Autonomous region, forest land in Heilongjiang Province and cultivated land in Henan Province. The experimental results show that the average absolute error of based on ARIMA-BP ecosystem service value prediction model is only 0.87%, and the average absolute error of PCABP-ARIMA and PCABP+ARIMA prediction model is 1.98% and 2.24% respec- tively.ARIMA-BP is the best, which is 62.67% smaller than the traditional BP neural network prediction model

Key words

ecosystem / service value / forecasting / ARIMA-BP / PCABP-ARIMA / PCABP+ARIMA

引用本文

导出引用
面向生态系统服务价值的组合预测算法研究[J]. 电脑与电信. 2020, 1(1-2): 61-64
ZHANG Jun-ru ZHANG Jia-lei. Research on Combination ForecastingAlgorithm for Ecosystem Service Value[J]. Computer & Telecommunication. 2020, 1(1-2): 61-64

Accesses

Citation

Detail

段落导航
相关文章

/