矩形孔径柱面镜面形拟合基底多项式研究

孙玮苑 叶东 黄亚

电脑与电信 ›› 2018, Vol. 1 ›› Issue (11) : 8-11.

电脑与电信 ›› 2018, Vol. 1 ›› Issue (11) : 8-11.
基金项目

矩形孔径柱面镜面形拟合基底多项式研究

  • 孙玮苑 叶东 黄亚
作者信息 +

Research on the Polynomial for Fitting Cylindrical Surface in Rectangular Aperture

Author information +
文章历史 +

摘要

对矩形孔径柱面镜面形的拟合方法进行了研究,将矩形域的扩展Zernike多项式与Chebyshev多项式分别作为面形拟合基底,对导出面形数据进行波面复原,分析赛德像差与拟合基底的对应关系对比拟合结果,Chebyshev多项式较矩形域的扩展Zernike多项式有较好的像差分离能力。

Abstract

In this paper, the fitting method of cylindrical mirror with rectangular aperture is studied. The extended Zernike polynomial and Chebyshev polynomial in rectangular aperture are used as the polynomial of surface fitting respectively. The wavefront is reconstructed from the surface data. The corresponding relationship between Seidel aberration and the fitting polynomial is analyzed and compared. The Chebyshev polynomial shows the good ability of separating aberration than the extended Zernike polynomial in rectangular aperture.

关键词

面形拟合 / 矩形孔径柱面镜 / Zernike多项式 / Chebyshev多项式

Key words

surface fitting / rectangular aperture / Zernike polynomial / Chebyshev polynomial

引用本文

导出引用
孙玮苑 叶东 黄亚. 矩形孔径柱面镜面形拟合基底多项式研究[J]. 电脑与电信. 2018, 1(11): 8-11
SUN Wei-yuan YE Dong HUANG Ya. Research on the Polynomial for Fitting Cylindrical Surface in Rectangular Aperture[J]. Computer & Telecommunication. 2018, 1(11): 8-11
中图分类号: TH74   

基金

江苏省湖泊环境遥感技术工程实验室资助项目JSLERS-2018-004

Accesses

Citation

Detail

段落导航
相关文章

/