基于机器学习的基站覆盖范围仿真

王 旺

电脑与电信 ›› 2018, Vol. 1 ›› Issue (11) : 45-47.

电脑与电信 ›› 2018, Vol. 1 ›› Issue (11) : 45-47.
网络与通信

基于机器学习的基站覆盖范围仿真

  • 王 旺
作者信息 +

Coverage Simulation of Base Stations Based on Machine Learning

Author information +
文章历史 +

摘要

通过从移动终端上报的经纬度和基站ID,运用机器学习手段对基站的覆盖范围进行仿真,并在此基础上对其位置进行优化。避免了基站重复建设所导致的资源浪费,同时也节省了人工实地测量的高额时间和经济成本,为高效的网络建设提供了保障。

Abstract

In this paper, data reported by the mobile terminal, including longitude and latitude, in addition to the ID of the base station are collected. Then machine learning techniques are employed to obtain the simulated coverage of the base stations, hence advoiding the waste of resources in over-construction, at the same time saving the high temporal and financial costs in on-site measuring of parameters, laying a solid foundation for efficient network construction.

关键词

机器学习 / 覆盖范围仿真 / 位置优化

Key words

machine learning / coverage simulation / position optimization

引用本文

导出引用
王 旺. 基于机器学习的基站覆盖范围仿真[J]. 电脑与电信. 2018, 1(11): 45-47
Wang Wang. Coverage Simulation of Base Stations Based on Machine Learning[J]. Computer & Telecommunication. 2018, 1(11): 45-47

Accesses

Citation

Detail

段落导航
相关文章

/