摘要
针对传统交通控制与诱导模型及算法的不足,提出了具有中心协调系统(CCOS)的交通控制与诱导协同模
型。利用数据融合技术将历史数据的短时交通预测、交通事件检测结果以及实时交通流数据设计面向交通动态的信息融合,
并采用神经网络技术构建基于神经网络的交通控制诱导协同模型,同时对模型的参数进行了确定。通过典型的路网进行仿真
实验和对比分析,实验验证了该模型是可行和有效的。
Abstract
In view of the shortage of traditional traffic control and guidance model and algorithms, the traffic control and guidance
model based on central coordination system (CCOS) is proposed. In this model, the short-term traffic prediction of past traffic
data, the result of traffic incident detection and the real-time traffic flow data are used to design the traffic-oriented dynamic traffic
information fusion. Moreover, using the neural network technology, the traffic control and guidance coordination model based on
neural network system is presented. Its parameters are decided by the experiments. Finally, a number of typical local road networks
are selected for simulation comparative experiments. The experiments show this model is feasible and effective.
关键词
交通控制 /
交通诱导 /
数据融合 /
神经网络 /
协同模型
Key words
traffic control /
traffic guidance /
data fusion /
neural network /
coordination model
傅贵, 杨朝霞, 周权.
基于神经网络的交通控制诱导协同模型[J]. 电脑与电信. 2017, 1(7): 17-22
Fu Gui, Yang Zhaoxia, Zhou Quan.
Traffic Control Guidance Coordination Model Based on Neural Network[J]. Computer & Telecommunication. 2017, 1(7): 17-22
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
基金
广州市121 人才梯队工程资助项目和“智慧天河”体系架构研究项目,项目编号:201603RY004。