Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2017, Vol. 1 Issue (6): 51-53    
  应用技术与研究 本期目录 | 过刊浏览 | 高级检索 |
深度学习技术在信息系统数据分析中的应用
林伟声
广州市城市规划自动化中心
The Application of Deep Learning Technologies in Data Analysis of Information System
LinWeisheng
Guangzhou City Planning Automation Center
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 深度学习是近年来机器学习领域的一个热点研究方向,其主要方法是通过增加学习器的层数,增大其通道数 和参数的规模,借助大数据学习时代的超强计算能力,发现原始数据集中的高层抽象概念,为应用领域的决策支持服务。探讨 了在信息系统的数据分析任务中深度学习技术的应用方法,着重阐述了卷积神经网络和堆叠自动编码器的主要原理和实现方 法,及其在信息系统的数据分析中的应用案例,并对其应用价值进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林伟声
关键词 深度学习信息系统数据分析卷积神经网络堆叠自动编码器    
Abstract:Deep learing is an active research area in machine learning community. Its main idea is to discover high-level abstract concepts in original datasets with huge computational power of the age of big data, by increasing the number of layers of the learners, so as to increase the size of channels and the quantity of parameters. It becomes a significant information source for decision support of application domains. We explore the methods of applying deep learning technologies in the data analysis tasks of information systems by presenting the main principles and implemetation details of two deep learning models, convolutionan neural network and stacked auto-encoders in emphasis, their application cases in the data analysis of information system, as well as the analysis on their application value.
Key wordsdeep learning    data analysis of information system    convolutional neural network    stacked auto-encoder
年卷期日期: 2017-06-10      出版日期: 2017-11-16
:  TP391.4  
作者简介: 林伟声(1980-),男,广东揭阳人,助理工程师,研究方向为信息系统数据分析、卷积神经网络、堆叠自动编码器。
引用本文:   
林伟声. 深度学习技术在信息系统数据分析中的应用[J]. 电脑与电信, 2017, 1(6): 51-53.
LinWeisheng. The Application of Deep Learning Technologies in Data Analysis of Information System. Computer & Telecommunication, 2017, 1(6): 51-53.
链接本文:  
https://www.computertelecom.com.cn/CN/  或          https://www.computertelecom.com.cn/CN/Y2017/V1/I6/51
[1] 李春辉王小英张庆洁刘翰卓梁嘉烨高宁康. 基于多尺度卷积神经网络的DDoS攻击检测方法[J]. 电脑与电信, 2024, 1(6): 35-.
[2] 周 锐  刘海军  邢丽莉  崔春杰  王高远. 基于卷积神经网络的儿童自闭症面部特征分类[J]. 电脑与电信, 2024, 1(5): 38-.
[3] 任 豪. 结合注意力特征融合的八度卷积表情识别方法[J]. 电脑与电信, 2024, 1(5): 71-.
[4] 王 瑾  王 睿. 基于多尺度特征深度学习的人脸表情识别算法[J]. 电脑与电信, 2024, 1(5): 75-.
[5] 聂 铖  王 杰.
数据分析方法的研究与发展综述
[J]. 电脑与电信, 2024, 1(4): 200-25.
[6] 马 艳  刘海军  贺 忍  崔春杰  王高远  杨月巧. 基于Informer的电离层电子总量预测[J]. 电脑与电信, 2024, 1(1): 17-20.
[7] 信博夫. 基于yolov5的弱光环境航拍车辆检测[J]. 电脑与电信, 2024, 1(1): 78-83.
[8] 苏萃文 柴国强.
基于面部特征检测的人脸表情实时识别
[J]. 电脑与电信, 2023, 1(1-2): 17-21.
[9] 何宗熹 蒋明忠 谢铭霞 庞家宝 陈秋艳 胡益博. 基于YOLOv8和人脸关键点检测的驾驶员 疲劳驾驶识别算法设计[J]. 电脑与电信, 2023, 1(11): 1-6.
[10] 张小雪 黄 巍.
基于卷积神经网络的交通标志识别算法
[J]. 电脑与电信, 2022, 1(7): 1-.
[11] 陈俊安 陆庚有 谢倩怡 龚智慧 刘建平 彭绍湖.
图像去雾算法研究综述
[J]. 电脑与电信, 2022, 1(7): 63-.
[12] 刘逸琛.
基于变分自编码器的商品文本分类算法设计
[J]. 电脑与电信, 2022, 1(6): 37-.
[13] 王鹏程 苏一水 王茂发.
基于神经网络的面包智能溯源系统
[J]. 电脑与电信, 2022, 1(5): 19-.
[14] 管 尧 朱 凯.
基于雾天条件下交通道路上的目标检测
[J]. 电脑与电信, 2022, 1(5): 69-.
[15] 张苗苗 柴国强 于海乐 徐昊璇.
基于深度学习的面部特征检测与疲劳驾驶预警
[J]. 电脑与电信, 2022, 1(12): 1-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4