摘要
粒子群(PSO)算法在认知无线电频谱分配问题上发挥着重要的作用,但是在连续无约束条件下基本的PSO 算
法才能得以运用,并且在此条件下,早熟收敛和收敛速度不够快等问题仍然无法得到效解决。为了优化这些问题,本文将对粒
子群算法的早熟收敛问题进行分析并加以改进,成功地将统一的粒子群算法应用于解决频谱分配问题。在综合考虑系统的总
宽带收益及用户接入公平性的基础上,建立了相应的目标函数,并验证了该算法的可行性和优越性。
Abstract
Particle swarm optimization algorithm plays an important role in cognitive radio spectrum allocation. It can only
work in continuous and unconstrained condition. And there are the problems of premature convergence and slow convergence speed,
which are not effectively resolved. In order to effectively solve these problems, this article analyzes and improves the premature convergence
problem of particle swarm optimization (PSO), successfully applying particle swarm optimization (PSO) algorithm to
solve the problem of spectrum allocation. Considering the system total broadband returns and the fairness of user access, the corresponding
objective function is established, the feasibility and superiority of this algorithm are proved.
关键词
认知无线电 /
频谱分配 /
粒子群优化算法
Key words
cognitive radio spectrum allocation /
Particle Swarm Optimization (PSO) /
algorithm
冀鹏飞.
基于粒子群优化算法的无线电
频谱分配方法研究[J]. 电脑与电信. 2016, 1(8): 48-50
Ji Pengfei.
Study on the Radio Spectrum Allocation Method Based on Particle
Swarm Optimization Algorithm[J]. Computer & Telecommunication. 2016, 1(8): 48-50
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}