摘要
针对入侵检测系统特征报警聚类质量低、冗余告警的不足,提出基于改进混沌自适应粒子群优化的IDS 特征
报警聚类方法。该方法结合混沌算法特性和改进粒子群算法自适应惯性权重系数以及对非线性动态学习因子进行改善,引导
粒子群在混沌与稳定之间交替波动,保证粒子运动惯性,更利于趋近最优。本方法能够克服PSO算法的过早收敛、“惰性”反
应等缺点,利于聚类中心更能趋向全局最优。实验结果表明,本文粒子群参数改进算法提高了特征报警聚类质量,具有较高的
检测率和较低的误报率。
Abstract
Aiming at the the low quality of feature clustering and excessive redundant alarms in IDS, an IDS alerts clustering algorithm
based on novel chaotic particle swarm optimization is proposed. It combines the characteristics of chaotic PSO algorithms,
adaptive inertia weight coefficient, and non-linear dynamic learning factor, so as to make particles move between the state of chaos
and stable. It guarantees the particle motion inertia, and approaches the optimal value. It also can overcome the problems of premature
convergence and "inert" reaction of PSO algorithm, and help the center of cluster to find the global optimal solution. The experiment
results show that the improvement of particle swarm parameters improves the quality of feature clustering in IDS alarm, and
has higher detection rate and lower false detection rate.
关键词
入侵检测 /
粒子群优化 /
混沌 /
自适应惯性权重 /
非线性动态学习因子
Key words
IDS /
particle swarm optimization /
chaos /
adaptive inertia weight /
non-linear dynamic learning factor
吴有晓.
基于改进混沌粒子群的聚类检测算法研究[J]. 电脑与电信. 2016, 1(10): 73-78
Wu Youxiao.
Clustering Algorithm Based on Novel Chaotic Particle Swarm Optimization[J]. Computer & Telecommunication. 2016, 1(10): 73-78
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}