基于高层语义词袋的人体行为识别方法

黄少年, 施游

电脑与电信 ›› 2015, Vol. 1 ›› Issue (3) : 37-39.

电脑与电信 ›› 2015, Vol. 1 ›› Issue (3) : 37-39.
基金项目

基于高层语义词袋的人体行为识别方法

  • 黄少年1,施游2
作者信息 +

Human Activity Recognition Based on High-level Semantic Codebook

  • Huang Shaonian1,Shi You2
Author information +
文章历史 +

摘要

人体行为分析为视频监控系统、视频检索系统提供重要的研究基础。本文提出了一种基于高层语义词袋模型 的人体行为识别方法。该方法根据底层词袋中词汇的相关关系,构造出一个基于词汇交互信息量的底层词汇图;然后使用层 次聚类的方法对该图进行分割,得到底层词汇组模型,最后将该模型表示为高层语义词袋模型。实验结果表明,该方法可以高 效地识别视频中的人体行为。

Abstract

Human activity recognition is the important basis of video surveillance system. In this paper, a new activity recognition method is proposed based on the high-level codebook. We construct a code-word graph based on the mutual information of lowlevel code-words, and then partition the graph into different groups, which discover the high-level code-words patterns. Experimental result shows that the proposed method can effective recognize human activities.

关键词

行为识别 / 语义词袋 / 视频监控

Key words

activity recognition / semantic codebook / video surveillance

引用本文

导出引用
黄少年, 施游. 基于高层语义词袋的人体行为识别方法[J]. 电脑与电信. 2015, 1(3): 37-39
Human Activity Recognition Based on High-level Semantic Codebook[J]. Computer & Telecommunication. 2015, 1(3): 37-39
中图分类号: TP391   

Accesses

Citation

Detail

段落导航
相关文章

/