摘要
将语音信号处理领域的隐马尔科夫模型HMM 引入DC/DC 变换器故障检测。在简要介绍HMM 及其优点
的基础上, 提出了一种基于HMM 的DC/DC 变换器故障检测方法。首先分析开关电源的失效机理,选择输出电压、电感电流
作为特征参数;然后对每个状态的观察样本序列训练并建立HMM 模型;最后以典型boost 电路模型进行了仿真实验。实验结
果表明该方法能可靠识别内部故障,效果明显,并且所需样本少,训练速度快。
Abstract
Hidden Markov model (HMM), which is initially employed in the field of speech signal processing, is introduced into
DC/DC converter failure detection. HMM is depicted briefly, and a new method to detect convert failure based on HMM is presented.
First, this paper analyzes the failure mechanism of DC/DC convert, selects the output ripple voltage and inductor current and output
power as characteristic vectors. Then, it models for every state utilizing HMM. Extensive experiments have been conducted on a
typical boost circuit model. The calculation result shows that this method is able to detect failure correctly
关键词
DC /
DC 变换器 /
隐马尔可夫模型 /
特征提取 /
归一化 /
故障检测
Key words
DC /
DC converter /
Hidden Markov Model (HMM) /
feature extraction /
normalization /
failure detection
张翼翔, 杨铁宝.
基于隐马尔科夫模型的DC/DC变换器故障检测[J]. 电脑与电信. 2015, 1(1-2): 63-66
Zhang Yixiang, Yang Tiebao.
Research on the Failure Detection for DC/DC Converter Based on HMM[J]. Computer & Telecommunication. 2015, 1(1-2): 63-66
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}