Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信  2024, Vol. 1 Issue (6): 26-30    DOI: 10.15966/j.cnki.dnydx.2024.06.018
  本期目录 | 过刊浏览 | 高级检索 |
基于SDN架构的DDoS攻击检测研究
山西工程科技职业大学
Research on DDoS Attack Detection Technology based on SDN 
Shanxi Vocational University of Engineering and Technology
全文: PDF( KB)  
输出: BibTeX | EndNote (RIS)      
摘要 SDN采用集中控制方式,实现了网络管理的可视化和动态化,是当前新型的网络架构。但SDN设计之初,未考虑安全问题,在DDoS攻击如此盛行的当下,开展SDN架构下的攻击检测研究非常必要。在分析了SDN架构机制后,针对DDoS攻击,研究了攻击检测模块的位置部署,设计出多层次协同检测方案。针对攻击检测建模问题,设计出基于集成学习算法的独立建模方案。从KDDCUP99数据集中无放回抽取两组样本,选用SVM和adaBoost算法先后进行独立建模和样本组合建模。使用adaBoost算法对样本的分类性能有一定的提升,单独建模未对样本分类性能带来影响,在teardrop上还表现出高于总样本的分类效果。实验结果可知,独立建模用于转发平面和控制平面的协同检测方案,具有一定的可行性。该方案从降低SDN集中控制中心的负担出发,为网络的有效管理提供了保障,对SDN架构的攻击检测具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 SDN架构DDoS攻击独立建模集成学习协同检测    
Abstract:SDN adopts a centralized control method, achieving visualization and dynamism of network management, and is currently a new type of network architecture. However, at the beginning of SDN design, security issues were not considered. In the current situation where DDoS attacks are so prevalent, it is necessary to conduct research on attack detection under SDN architecture. After analyzing the SDN architecture mechanism, this article studies the location deployment of attack detection modules and designs a multi-level collaborative detection scheme for DDoS attacks. It designs an independent modeling scheme based on ensemble learning algorithms to address the problem of attack detection modeling. It extracts two sets of samples from the KDDCUP99 dataset without replacement, and uses SVM and adaBoost algorithms for independent modeling and sample combination modeling. The use of the adaBoost algorithm has a certain improvement in the classi?cation performance of samples, and modeling alone has no impact on the classi?cation performance of samples. It also shows higher classi?cation performance than the total samples on teardrop. The experimental results show that independent modeling for collaborative detection of forwarding plane and control plane has certain feasibility. This scheme starts from reducing the burden on the SDN centralized control center, providing a guarantee for e?ective network management, and has certain guiding signi?cance for attack detection of SDN architecture. 
Key wordsSDN architecture    DDoS attack    independent modeling    ensemble learning    collaborative detection
年卷期日期: 2024-06-10      出版日期: 2024-11-01
引用本文:   
靳燕. 基于SDN架构的DDoS攻击检测研究[J]. 电脑与电信, 2024, 1(6): 26-30.
JIN Yan. Research on DDoS Attack Detection Technology based on SDN . Computer & Telecommunication, 2024, 1(6): 26-30.
链接本文:  
https://www.computertelecom.com.cn/CN/10.15966/j.cnki.dnydx.2024.06.018  或          https://www.computertelecom.com.cn/CN/Y2024/V1/I6/26
[1] 李春辉王小英张庆洁刘翰卓梁嘉烨高宁康. 基于多尺度卷积神经网络的DDoS攻击检测方法[J]. 电脑与电信, 2024, 1(6): 35-.
[2] 张志源. 基于聚类的应用层DDoS攻击检测方法 [J]. 电脑与电信, 2021, 1(7): 25-28.
[3] 沈雅婷 邵 莹 卞 恺.
智慧图书馆图书分类模型技术研究综述
[J]. 电脑与电信, 2021, 1(12): 9-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4