Please wait a minute...
 
主管单位:广东省科学技术厅
主办单位:广东省科技合作研究促进中心
编辑出版:《电脑与电信》编辑部
ISSN 1008-6609 CN 44-1606/TN
邮发代号:46-95
国内发行:广东省报刊发行局
《电脑与电信》唯一官方网站。
电脑与电信
  网络与通信 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的低复杂度LDPC译码器
中南民族大学 电子信息工程学院 智能无线通信湖北省重点实验室
Low Complexity LDPC Decoder Based on Deep Learning
Hubei Key Laboratory of Intelligent Wireless Communication
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:In the research of channel decoding combined with deep learning technology, the problem of dimension limitation has al- ways been the focus of researchers. Since the deep neural network is storage intensive, the channel decoder of deep neural network usually needs much more computation consumption and memory than the conventional belief-propagation (BP) decoding. In order to alleviate this problem, an improved neural network decoder for LDPC code is proposed. According to the weight parameter value distribution in the deep neural network channel decoder, weight parameters are selectively added to a new neural network decoder. By limiting the number of training parameters, the scale of the deep neural network channel decoder is reduced. And our algorithm gets a large decoding gain than BP decoding.
Key wordsdeep learning    channel decoding    LDPC cod
年卷期日期: 2020-03-10      出版日期: 2020-03-10
引用本文:   
. 基于深度学习的低复杂度LDPC译码器[J]. 电脑与电信, .
YANG Zhen-lin. Low Complexity LDPC Decoder Based on Deep Learning. Computer & Telecommunication, 2020, 1(3): 62-65.
链接本文:  
https://www.computertelecom.com.cn/CN/  或          https://www.computertelecom.com.cn/CN/Y2020/V1/I3/62
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
  Copyright © 电脑与电信 All Rights Reserved.
地址:广州市连新路171号广东国际科技中心 邮编:510033
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
粤ICP备05080322号-4